Colin Leong
Add an output for reduce_holistic
77ef1b5
from pathlib import Path
import json
from typing import Dict, Optional, List, Tuple
from collections import defaultdict
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import numpy as np
from pose_format import Pose
from pose_format.utils.generic import pose_hide_legs, reduce_holistic
from pose_format.pose_visualizer import PoseVisualizer
from pyzstd import decompress
from PIL import Image
import mediapipe as mp
mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
str(p)
for p in sorted(
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
)
]
COMPONENT_SELECTION_METHODS = ["manual", "signclip", "youtube-asl", "reduce_holistic"]
def download_json(data):
json_data = json.dumps(data)
json_bytes = json_data.encode('utf-8')
return json_bytes
def get_points_dict_and_components_with_index_list(
pose: Pose, landmark_indices: List[int], components_to_include: Optional[List[str]]
) -> Tuple[List[str], Dict[str, List[str]]]:
"""Used to get components/points if you only have a list of indices,
e.g. listed in a research paper like YouTube-ASL.
If you want to also explicitly specify component names, you can.
So for example, to get the two hands and the nose you could do the following:
c_names, points_dict = get_points_dict_and_components_with_index_list(pose,
landmark_indices=[0] # which is "NOSE" within POSE_LANDMARKS components
components_to_include=["LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS]
)
then you can just use get_components
filtered_pose = pose.get_components(c_names, points_dict)
"""
components_to_get = []
points_dict = defaultdict(list)
for c in pose.header.components:
for point_name in c.points:
point_index = pose.header.get_point_index(c.name, point_name)
if point_index in landmark_indices:
components_to_get.append(c.name)
points_dict[c.name].append(point_name)
# print(f"Point with index {point_index} has name {c.name}:{point_name}")
if components_to_include:
components_to_get.extend(components_to_include)
components_to_get = list(set(components_to_get))
# print("*********************")
# print(components_to_get)
# print(points_dict)
return components_to_get, points_dict
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:
# with input_path.open("rb") as f_in:
if uploaded_file.name.endswith(".zst"):
return Pose.read(decompress(uploaded_file.read()))
else:
return Pose.read(uploaded_file.read())
@st.cache_data(hash_funcs={Pose: lambda p: np.asarray(p.body.data.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
if transparency:
cv_code = v.cv2.COLOR_BGR2RGBA
else:
cv_code = v.cv2.COLOR_BGR2RGB
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
return frames, images
def get_pose_gif(
pose: Pose,
step: int = 1,
start_frame: Optional[int] = None,
end_frame: Optional[int] = None,
fps: Optional[float] = None,
):
if fps is not None:
pose.body.fps = fps
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
frames = frames[start_frame:end_frame:step]
return v.save_gif(None, frames=frames)
st.write("# Pose-format explorer")
st.write(
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
st.write(
"If you need a .pose file, here's a few:"
)
st.write("* One of [me doing a self-introduction](https://drive.google.com/file/d/1_L5sYVhONDBABuTmQUvjsl94LbFqzEyP/view?usp=sharing)")
st.write("* One of [me signing ASL 'HOUSE'](https://drive.google.com/file/d/1uggYqLyTA4XdDWaWsS9w5hKaPwW86IF_/view?usp=sharing)")
st.write(
"* ... or [the same file, but with the 10 extra landmarks](https://drive.google.com/file/d/1XHkfn24PIas1a3XUUXYXTX2DvYeUDuCI/view?usp=drive_link) from mediapipe holistic's [`refine_face_landmarks` option](https://github.com/sign-language-processing/pose/?tab=readme-ov-file#2-estimating-pose-from-video)"
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])
if uploaded_file is not None:
with st.spinner(f"Loading {uploaded_file.name}"):
pose = load_pose(uploaded_file)
# st.write(pose.body.data.shape)
frames, images = get_pose_frames(pose=pose)
st.success("Done loading!")
st.write("### File Info")
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
st.write(pose.header)
st.write(f"### Selection")
component_selection = st.radio(
"How to select components?", options=COMPONENT_SELECTION_METHODS
)
component_names = [c.name for c in pose.header.components]
chosen_component_names = []
points_dict = {}
HIDE_LEGS = False
if component_selection == "manual":
chosen_component_names = st.pills(
"Select components to visualize",
options=component_names,
default=component_names,
selection_mode="multi",
)
for component in pose.header.components:
if component.name in chosen_component_names:
with st.expander(f"Points for {component.name}"):
selected_points = st.multiselect(
f"Select points for component {component.name}:",
options=component.points,
default=component.points,
)
if (
selected_points != component.points
): # Only add entry if not all points are selected
points_dict[component.name] = selected_points
elif component_selection == "signclip":
st.write("Selected landmarks used for [SignCLIP](https://arxiv.org/abs/2407.01264).")
chosen_component_names = [
"POSE_LANDMARKS",
"FACE_LANDMARKS",
"LEFT_HAND_LANDMARKS",
"RIGHT_HAND_LANDMARKS",
]
points_dict = {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}
elif component_selection == "reduce_holistic":
st.write("Using [pose_format.utils.generic.reduce_holistic](https://github.com/sign-language-processing/pose/blob/master/src/python/pose_format/utils/generic.py#L286)")
elif component_selection == "youtube-asl":
st.write("Selected landmarks used for [YouTube-ASL](https://arxiv.org/pdf/2306.15162).")
# https://arxiv.org/pdf/2306.15162
# For each hand, we use all 21 landmark points.
# Colin: So that's
# For the pose, we use 6 landmark points, for the shoulders, elbows and hips
# These are indices 11, 12, 13, 14, 23, 24
# For the face, we use 37 landmark points, from the eyes, eyebrows, lips, and face outline.
# These are indices 0, 4, 13, 14, 17, 33, 37, 39, 46, 52, 55, 61, 64, 81, 82, 93, 133, 151, 152, 159, 172, 178,
# 181, 263, 269, 276, 282, 285, 291, 294, 311, 323, 362, 386, 397, 468, 473.
# Colin: note that these are with refine_face_landmarks on, and are relative to the component itself. Working it all out the result is:
chosen_component_names=['POSE_LANDMARKS', 'FACE_LANDMARKS', 'LEFT_HAND_LANDMARKS', 'RIGHT_HAND_LANDMARKS']
points_dict={
"POSE_LANDMARKS": [
"LEFT_SHOULDER",
"RIGHT_SHOULDER",
"LEFT_HIP",
"RIGHT_HIP",
"LEFT_ELBOW",
"RIGHT_ELBOW"
],
"FACE_LANDMARKS": [
"0",
"4",
"13",
"14",
"17",
"33",
"37",
"39",
"46",
"52",
"55",
"61",
"64",
"81",
"82",
"93",
"133",
"151",
"152",
"159",
"172",
"178",
"181",
"263",
"269",
"276",
"282",
"285",
"291",
"294",
"311",
"323",
"362",
"386",
"397",
]
}
# check if we have the extra points from refine_face_landmarks
additional_face_points = ["468", "473"]
for additional_point in additional_face_points:
try:
point_index = pose.header.get_point_index("FACE_LANDMARKS", additional_point)
points_dict['FACE_LANDMARKS'].append(additional_point)
except ValueError:
# not in the list
# st.write(f"Point {additional_point} not in file")
pass
# Filter button logic
# Filter section
st.write("### Filter .pose File")
filtered = st.button("Apply Filter!")
if filtered:
st.write(f"Filtering strategy: {component_selection}")
if component_selection == "reduce_holistic":
# st.write(f"reduce_holistic:")
pose = reduce_holistic(pose)
st.write("Used pose_format.reduce_holistic")
else:
pose = pose.get_components(components=chosen_component_names, points=points_dict if points_dict else None
)
with st.expander("Show component list and points dict used for get_components"):
st.write("##### Component names")
st.write(chosen_component_names)
st.write("##### Points dict")
st.write(points_dict)
with st.expander("How to replicate in pose-format"):
st.write("##### Usage:")
st.write("How to achieve the same result with pose-format library")
# points_dict_str = json.dumps(points_dict, indent=4)
usage_string = f"components={chosen_component_names}\npoints_dict={points_dict}\npose = pose.get_components(components=components, points=points_dict)"
st.code(usage_string)
if HIDE_LEGS:
pose = pose_hide_legs(pose, remove=True)
st.session_state.filtered_pose = pose
filtered_pose = st.session_state.get("filtered_pose", pose)
if filtered_pose:
filtered_pose = st.session_state.get("filtered_pose", pose)
st.write("#### Filtered .pose file")
st.write(f"Pose data shape: {filtered_pose.body.data.shape}")
with st.expander("Show header"):
st.write(filtered_pose.header)
with st.expander("Show body"):
st.write(filtered_pose.body)
# with st.expander("Show data:"):
# for frame in filtered_pose.body.data:
# st.write(f"Frame:{frame}")
# for person in frame:
# st.write(person)
pose_file_out = Path(uploaded_file.name).with_suffix(".pose")
with pose_file_out.open("wb") as f:
pose.write(f)
with pose_file_out.open("rb") as f:
st.download_button(
"Download Filtered Pose", f, file_name=pose_file_out.name
)
st.write("### Visualization")
step = st.select_slider(
"Step value to select every nth image", list(range(1, len(frames))), value=1
)
fps = st.slider(
"FPS for visualization",
min_value=1.0,
max_value=filtered_pose.body.fps,
value=filtered_pose.body.fps,
)
start_frame, end_frame = st.slider(
"Select Frame Range",
0,
len(frames),
(0, len(frames)), # Default range
)
# Visualization button logic
if st.button("Visualize"):
# Load filtered pose if it exists; otherwise, use the unfiltered pose
pose_bytes = get_pose_gif(
pose=filtered_pose,
step=step,
start_frame=start_frame,
end_frame=end_frame,
fps=fps,
)
if pose_bytes is not None:
st.image(pose_bytes)