Chatterbox_AP / app.py
ceymox's picture
Update app.py
e4a088a verified
import os
import time
import torch
import random
import numpy as np
import soundfile as sf
import tempfile
import uuid
import logging
import requests
import io
import json
import base64
from typing import Optional, Dict, Any, List
from pathlib import Path
import gradio as gr
import spaces
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"πŸš€ Running on device: {DEVICE}")
# Global model variable
MODEL = None
CHATTERBOX_AVAILABLE = False
# Storage directories - use persistent storage if available
if os.path.exists("/data"):
# Hugging Face Spaces persistent storage
VOICES_DIR = "/data/custom_voices"
AUDIO_DIR = "/data/generated_audio"
logger.info("βœ… Using Hugging Face Spaces persistent storage (/data)")
else:
# Fallback to local storage
VOICES_DIR = "custom_voices"
AUDIO_DIR = "generated_audio"
logger.warning("⚠️ Using local storage (voices will not persist)")
os.makedirs(AUDIO_DIR, exist_ok=True)
os.makedirs(VOICES_DIR, exist_ok=True)
# Voice storage
audio_cache = {}
voice_library = {}
# Default/Built-in voices
BUILTIN_VOICES = {
"female_default": {
"voice_id": "female_default",
"name": "Female Default",
"description": "Professional female voice",
"audio_url": "https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac",
"type": "builtin",
"created_at": "2024-01-01T00:00:00Z"
},
"male_professional": {
"voice_id": "male_professional",
"name": "Male Professional",
"description": "Confident male voice",
"audio_url": "https://storage.googleapis.com/chatterbox-demo-samples/prompts/male_professional.flac",
"type": "builtin",
"created_at": "2024-01-01T00:00:00Z"
}
}
def encode_audio_to_base64(audio_data, sample_rate):
"""Encode audio data to base64 string for storage"""
try:
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
sf.write(temp_file.name, audio_data, sample_rate)
# Read as bytes and encode
with open(temp_file.name, 'rb') as f:
audio_bytes = f.read()
# Cleanup temp file
os.unlink(temp_file.name)
# Encode to base64
return base64.b64encode(audio_bytes).decode('utf-8')
except Exception as e:
logger.error(f"Error encoding audio: {e}")
return None
def decode_audio_from_base64(base64_string):
"""Decode base64 string back to audio file"""
try:
# Decode base64
audio_bytes = base64.b64decode(base64_string.encode('utf-8'))
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
temp_file.write(audio_bytes)
temp_file.close()
return temp_file.name
except Exception as e:
logger.error(f"Error decoding audio: {e}")
return None
def load_voice_library():
"""Load saved custom voices from persistent storage"""
global voice_library
voice_library = BUILTIN_VOICES.copy()
voices_json_path = os.path.join(VOICES_DIR, "voices.json")
try:
if os.path.exists(voices_json_path):
with open(voices_json_path, 'r', encoding='utf-8') as f:
custom_voices = json.load(f)
voice_library.update(custom_voices)
logger.info(f"βœ… Loaded {len(custom_voices)} custom voices from persistent storage")
else:
logger.info("πŸ“ No existing voice library found, starting fresh")
# Log voice library status
total_voices = len(voice_library)
custom_count = len([v for v in voice_library.values() if v.get("type") == "custom"])
builtin_count = len([v for v in voice_library.values() if v.get("type") == "builtin"])
logger.info(f"πŸ“š Voice Library: {total_voices} total ({builtin_count} builtin, {custom_count} custom)")
except Exception as e:
logger.error(f"❌ Error loading voice library: {e}")
logger.info("πŸ”„ Starting with builtin voices only")
def save_voice_library():
"""Save custom voices to persistent storage"""
try:
# Only save custom voices (not builtin)
custom_voices = {k: v for k, v in voice_library.items() if v.get("type") != "builtin"}
voices_json_path = os.path.join(VOICES_DIR, "voices.json")
# Ensure directory exists
os.makedirs(os.path.dirname(voices_json_path), exist_ok=True)
with open(voices_json_path, 'w', encoding='utf-8') as f:
json.dump(custom_voices, f, ensure_ascii=False, indent=2)
logger.info(f"βœ… Saved {len(custom_voices)} custom voices to persistent storage")
logger.info(f"πŸ“ Storage location: {voices_json_path}")
# Verify the save worked
if os.path.exists(voices_json_path):
file_size = os.path.getsize(voices_json_path)
logger.info(f"πŸ“Š Voice library file size: {file_size} bytes")
except Exception as e:
logger.error(f"❌ Error saving voice library: {e}")
logger.error(f"πŸ“ Attempted path: {voices_json_path}")
def create_voice_from_audio(audio_file, voice_name, voice_description="Custom voice"):
"""Create a new voice from uploaded audio with persistent storage"""
try:
voice_id = f"voice_{int(time.time())}_{uuid.uuid4().hex[:8]}"
# Handle different audio input formats
if isinstance(audio_file, tuple):
# Gradio audio format (sample_rate, audio_data)
sample_rate, audio_data = audio_file
else:
# File path - load the audio
audio_data, sample_rate = sf.read(audio_file)
# Encode audio to base64 for persistent storage
audio_base64 = encode_audio_to_base64(audio_data, sample_rate)
if audio_base64 is None:
raise ValueError("Failed to encode audio")
# Create voice entry with embedded audio
voice_entry = {
"voice_id": voice_id,
"name": voice_name,
"description": voice_description,
"audio_base64": audio_base64, # Store audio as base64
"sample_rate": int(sample_rate),
"type": "custom",
"created_at": time.strftime("%Y-%m-%dT%H:%M:%SZ"),
"audio_duration": len(audio_data) / sample_rate
}
# Add to voice library
voice_library[voice_id] = voice_entry
# Save to persistent storage
save_voice_library()
logger.info(f"βœ… Created persistent voice: {voice_name} ({voice_id})")
logger.info(f"🎡 Audio: {len(audio_data)} samples, {sample_rate}Hz, {voice_entry['audio_duration']:.2f}s")
return voice_id, voice_entry
except Exception as e:
logger.error(f"❌ Error creating voice: {e}")
return None, None
def download_audio_from_url(url):
"""Download audio from URL and save to temporary file"""
try:
logger.info(f"πŸ“₯ Downloading reference audio from: {url}")
response = requests.get(url, timeout=30, headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
})
if response.status_code == 200:
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".flac", delete=False)
temp_file.write(response.content)
temp_file.close()
logger.info(f"βœ… Audio downloaded to: {temp_file.name}")
return temp_file.name
else:
logger.error(f"❌ HTTP {response.status_code} when downloading audio")
return None
except Exception as e:
logger.error(f"❌ Error downloading audio from URL: {e}")
return None
def get_voice_audio_path(voice_id):
"""Get the audio path for a voice (decode from base64 if custom, download if builtin)"""
if voice_id not in voice_library:
return None
voice_info = voice_library[voice_id]
# If it's a custom voice with base64 audio
if voice_info.get("type") == "custom" and "audio_base64" in voice_info:
# Decode base64 to temporary file
temp_path = decode_audio_from_base64(voice_info["audio_base64"])
if temp_path:
logger.info(f"βœ… Decoded custom voice audio: {voice_info['name']}")
return temp_path
else:
logger.warning(f"⚠️ Failed to decode audio for voice {voice_id}")
return None
# If it's a legacy custom voice with file path (for backward compatibility)
elif voice_info.get("type") == "custom" and "audio_path" in voice_info:
audio_path = voice_info["audio_path"]
if os.path.exists(audio_path):
return audio_path
else:
logger.warning(f"⚠️ Voice audio file not found: {audio_path}")
return None
# If it's a builtin voice with URL
elif voice_info.get("type") == "builtin" and "audio_url" in voice_info:
return download_audio_from_url(voice_info["audio_url"])
return None
def load_chatterbox_model():
"""Try multiple ways to load ChatterboxTTS from Resemble AI"""
global MODEL, CHATTERBOX_AVAILABLE
# Method 1: Try Resemble AI ChatterboxTTS (most likely)
try:
from chatterbox.src.chatterbox.tts import ChatterboxTTS
logger.info("βœ… Found Resemble AI ChatterboxTTS in chatterbox.src.chatterbox.tts")
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
CHATTERBOX_AVAILABLE = True
return True
except ImportError as e:
logger.warning(f"Method 1 (Resemble AI standard path) failed: {e}")
except Exception as e:
logger.warning(f"Method 1 failed with error: {e}")
# Method 2: Try alternative import path for Resemble AI repo
try:
from chatterbox.tts import ChatterboxTTS
logger.info("βœ… Found ChatterboxTTS in chatterbox.tts")
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
CHATTERBOX_AVAILABLE = True
return True
except ImportError as e:
logger.warning(f"Method 2 failed: {e}")
except Exception as e:
logger.warning(f"Method 2 failed with error: {e}")
# Method 3: Try direct chatterbox import
try:
import chatterbox
if hasattr(chatterbox, 'ChatterboxTTS'):
MODEL = chatterbox.ChatterboxTTS.from_pretrained(DEVICE)
elif hasattr(chatterbox, 'tts') and hasattr(chatterbox.tts, 'ChatterboxTTS'):
MODEL = chatterbox.tts.ChatterboxTTS.from_pretrained(DEVICE)
else:
raise ImportError("ChatterboxTTS not found in chatterbox module")
logger.info("βœ… Found ChatterboxTTS via direct import")
CHATTERBOX_AVAILABLE = True
return True
except ImportError as e:
logger.warning(f"Method 3 failed: {e}")
except Exception as e:
logger.warning(f"Method 3 failed with error: {e}")
# If we get here, the GitHub repo might have a different structure
logger.error("❌ Could not load ChatterboxTTS from Resemble AI repository")
logger.error("πŸ’‘ The GitHub repo might have a different structure than expected")
logger.error("πŸ”— Repository: https://github.com/resemble-ai/chatterbox.git")
logger.error("πŸ“‹ Check the repo's README for correct import instructions")
return False
def get_or_load_model():
"""Load ChatterboxTTS model if not already loaded"""
global MODEL
if MODEL is None:
logger.info("Loading ChatterboxTTS model...")
success = load_chatterbox_model()
if success:
if hasattr(MODEL, 'to'):
MODEL.to(DEVICE)
logger.info("βœ… ChatterboxTTS model loaded successfully")
else:
logger.error("❌ Failed to load ChatterboxTTS - using fallback")
create_fallback_model()
return MODEL
def create_fallback_model():
"""Create a fallback model that explains the issue"""
global MODEL
class FallbackChatterboxTTS:
def __init__(self, device="cpu"):
self.device = device
self.sr = 24000
@classmethod
def from_pretrained(cls, device):
return cls(device)
def to(self, device):
self.device = device
return self
def generate(self, text, audio_prompt_path=None, exaggeration=0.5,
temperature=0.8, cfg_weight=0.5):
logger.warning("🚨 USING FALLBACK MODEL - Real ChatterboxTTS not found!")
logger.warning(f"πŸ“ Text to synthesize: {text[:50]}...")
# Generate a more obvious fallback sound
duration = 2.0 # Fixed 2 seconds
t = np.linspace(0, duration, int(self.sr * duration))
# Create a distinctive "missing model" sound pattern
# Three beeps to indicate this is a fallback
beep_freq = 800 # Higher frequency beep
beep_pattern = np.zeros_like(t)
# Three short beeps
for i in range(3):
start_time = i * 0.6
end_time = start_time + 0.2
mask = (t >= start_time) & (t < end_time)
beep_pattern[mask] = 0.3 * np.sin(2 * np.pi * beep_freq * t[mask])
return torch.tensor(beep_pattern).unsqueeze(0)
MODEL = FallbackChatterboxTTS(DEVICE)
def set_seed(seed: int):
"""Set random seed for reproducibility"""
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
def generate_id():
"""Generate unique ID"""
return str(uuid.uuid4())
# Load voice library at startup
load_voice_library()
# Pydantic models for API
class TTSRequest(BaseModel):
text: str
voice_id: Optional[str] = "female_default"
exaggeration: Optional[float] = 0.5
temperature: Optional[float] = 0.8
cfg_weight: Optional[float] = 0.5
seed: Optional[int] = 0
class VoiceCreateRequest(BaseModel):
voice_name: str
voice_description: Optional[str] = "Custom voice"
class VoiceInfo(BaseModel):
voice_id: str
name: str
description: str
type: str
created_at: str
class TTSResponse(BaseModel):
success: bool
audio_id: Optional[str] = None
message: str
sample_rate: Optional[int] = None
duration: Optional[float] = None
# Load model at startup
try:
get_or_load_model()
if CHATTERBOX_AVAILABLE:
logger.info("βœ… Real ChatterboxTTS model loaded successfully")
else:
logger.warning("⚠️ Using fallback model - Upload ChatterboxTTS package for real synthesis")
except Exception as e:
logger.error(f"Failed to load any model: {e}")
MODEL = None
@spaces.GPU
def generate_tts_audio(
text_input: str,
voice_id: str,
exaggeration_input: float,
temperature_input: float,
seed_num_input: int,
cfgw_input: float
) -> tuple[int, np.ndarray]:
"""
Generate TTS audio using ChatterboxTTS model with voice ID
"""
current_model = get_or_load_model()
if current_model is None:
raise RuntimeError("No TTS model available")
if seed_num_input != 0:
set_seed(int(seed_num_input))
logger.info(f"🎡 Generating audio for: '{text_input[:50]}...'")
logger.info(f"🎭 Using voice: {voice_id}")
if not CHATTERBOX_AVAILABLE:
logger.warning("🚨 USING FALLBACK - Real ChatterboxTTS not found!")
# Get audio path for the voice
audio_prompt_path = get_voice_audio_path(voice_id)
temp_audio_file = None
try:
# Get audio path for the voice
audio_prompt_path = get_voice_audio_path(voice_id)
temp_audio_file = None
# Check if we got a temporary file (from base64 decode or URL download)
if audio_prompt_path and (audio_prompt_path.startswith('/tmp/') or 'temp' in audio_prompt_path):
temp_audio_file = audio_prompt_path
if audio_prompt_path:
voice_name = voice_library.get(voice_id, {}).get("name", voice_id)
logger.info(f"βœ… Using voice '{voice_name}' audio: {audio_prompt_path}")
else:
logger.warning(f"⚠️ Could not load audio for voice {voice_id}, using default")
# Generate audio
wav = current_model.generate(
text_input[:300], # Limit text length
audio_prompt_path=audio_prompt_path,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
if CHATTERBOX_AVAILABLE:
logger.info("βœ… Real ChatterboxTTS audio generation complete")
else:
logger.warning("⚠️ Fallback audio generated - upload ChatterboxTTS for real synthesis")
return (current_model.sr, wav.squeeze(0).numpy())
except Exception as e:
logger.error(f"❌ Audio generation failed: {e}")
raise
finally:
# Clean up temporary file (only if it's a downloaded URL or decoded audio)
if temp_audio_file and os.path.exists(temp_audio_file):
try:
os.unlink(temp_audio_file)
logger.info(f"πŸ—‘οΈ Cleaned up temporary file: {temp_audio_file}")
except:
pass
# FastAPI app for API endpoints
app = FastAPI(
title="ChatterboxTTS Voice Manager API",
description="Advanced text-to-speech with voice cloning and management",
version="2.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
"""API status endpoint"""
return {
"service": "ChatterboxTTS Voice Manager API",
"version": "2.0.0",
"status": "operational" if MODEL else "model_loading",
"model_loaded": MODEL is not None,
"real_chatterbox": CHATTERBOX_AVAILABLE,
"device": DEVICE,
"voices_available": len(voice_library),
"message": "Real ChatterboxTTS loaded" if CHATTERBOX_AVAILABLE else "Using fallback - upload ChatterboxTTS package",
"endpoints": {
"synthesize": "/api/tts/synthesize",
"voices": "/api/voices",
"create_voice": "/api/voices/create",
"audio": "/api/audio/{audio_id}",
"health": "/health"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy" if MODEL else "unhealthy",
"model_loaded": MODEL is not None,
"real_chatterbox": CHATTERBOX_AVAILABLE,
"device": DEVICE,
"voices_total": len(voice_library),
"timestamp": time.time(),
"warning": None if CHATTERBOX_AVAILABLE else "Using fallback model - upload ChatterboxTTS for production"
}
@app.get("/api/voices")
async def get_voices():
"""Get all available voices"""
voices = []
for voice_id, voice_info in voice_library.items():
voices.append(VoiceInfo(
voice_id=voice_id,
name=voice_info["name"],
description=voice_info["description"],
type=voice_info["type"],
created_at=voice_info["created_at"]
))
return {
"voices": voices,
"total": len(voices),
"builtin": len([v for v in voices if v.type == "builtin"]),
"custom": len([v for v in voices if v.type == "custom"])
}
@app.post("/api/voices/create")
async def create_voice_api(
voice_name: str,
voice_description: str = "Custom voice",
audio_file: UploadFile = File(...)
):
"""Create a new voice from uploaded audio"""
try:
# Read uploaded file
audio_data = await audio_file.read()
# Save to temporary file for processing
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
temp_file.write(audio_data)
temp_file.close()
# Create voice
voice_id, voice_entry = create_voice_from_audio(
temp_file.name,
voice_name,
voice_description
)
# Cleanup temp file
os.unlink(temp_file.name)
if voice_id:
return {
"success": True,
"voice_id": voice_id,
"message": f"Voice '{voice_name}' created successfully",
"voice_info": voice_entry
}
else:
raise HTTPException(status_code=500, detail="Failed to create voice")
except Exception as e:
logger.error(f"❌ Voice creation failed: {e}")
raise HTTPException(status_code=500, detail=f"Voice creation failed: {str(e)}")
@app.delete("/api/voices/{voice_id}")
async def delete_voice(voice_id: str):
"""Delete a custom voice"""
if voice_id not in voice_library:
raise HTTPException(status_code=404, detail="Voice not found")
voice_info = voice_library[voice_id]
if voice_info.get("type") == "builtin":
raise HTTPException(status_code=400, detail="Cannot delete builtin voices")
try:
# Delete legacy audio file if it exists
if "audio_path" in voice_info and os.path.exists(voice_info["audio_path"]):
os.unlink(voice_info["audio_path"])
# Remove from library
voice_name = voice_info["name"]
del voice_library[voice_id]
save_voice_library()
logger.info(f"βœ… Deleted voice: {voice_name} ({voice_id})")
return {
"success": True,
"message": f"Voice '{voice_name}' deleted successfully"
}
except Exception as e:
logger.error(f"❌ Voice deletion failed: {e}")
raise HTTPException(status_code=500, detail=f"Voice deletion failed: {str(e)}")
@app.post("/api/tts/synthesize", response_model=TTSResponse)
async def synthesize_speech(request: TTSRequest):
"""
Synthesize speech from text using voice ID
"""
try:
if MODEL is None:
raise HTTPException(status_code=503, detail="Model not loaded")
if not request.text.strip():
raise HTTPException(status_code=400, detail="Text cannot be empty")
if len(request.text) > 500:
raise HTTPException(status_code=400, detail="Text too long (max 500 characters)")
if request.voice_id not in voice_library:
raise HTTPException(status_code=404, detail=f"Voice '{request.voice_id}' not found")
start_time = time.time()
# Generate audio using voice ID
sample_rate, audio_data = generate_tts_audio(
request.text,
request.voice_id,
request.exaggeration,
request.temperature,
request.seed,
request.cfg_weight
)
generation_time = time.time() - start_time
# Save audio file
audio_id = generate_id()
audio_path = os.path.join(AUDIO_DIR, f"{audio_id}.wav")
sf.write(audio_path, audio_data, sample_rate)
# Cache audio info
voice_name = voice_library[request.voice_id]["name"]
audio_cache[audio_id] = {
"path": audio_path,
"text": request.text,
"voice_id": request.voice_id,
"voice_name": voice_name,
"sample_rate": sample_rate,
"duration": len(audio_data) / sample_rate,
"generated_at": time.time(),
"generation_time": generation_time,
"real_chatterbox": CHATTERBOX_AVAILABLE
}
message = f"Speech synthesized successfully using voice '{voice_name}'"
if not CHATTERBOX_AVAILABLE:
message += " (using fallback - upload ChatterboxTTS for real synthesis)"
logger.info(f"βœ… Audio saved: {audio_id} ({generation_time:.2f}s) with voice '{voice_name}'")
return TTSResponse(
success=True,
audio_id=audio_id,
message=message,
sample_rate=sample_rate,
duration=len(audio_data) / sample_rate
)
except HTTPException:
raise
except Exception as e:
logger.error(f"❌ Synthesis failed: {e}")
raise HTTPException(status_code=500, detail=f"Synthesis failed: {str(e)}")
@app.get("/api/audio/{audio_id}")
async def get_audio(audio_id: str):
"""Download generated audio file"""
if audio_id not in audio_cache:
raise HTTPException(status_code=404, detail="Audio not found")
audio_info = audio_cache[audio_id]
audio_path = audio_info["path"]
if not os.path.exists(audio_path):
raise HTTPException(status_code=404, detail="Audio file not found on disk")
def iterfile():
with open(audio_path, "rb") as f:
yield from f
return StreamingResponse(
iterfile(),
media_type="audio/wav",
headers={
"Content-Disposition": f"attachment; filename=tts_{audio_id}.wav"
}
)
@app.get("/api/audio/{audio_id}/info")
async def get_audio_info(audio_id: str):
"""Get audio file information"""
if audio_id not in audio_cache:
raise HTTPException(status_code=404, detail="Audio not found")
return audio_cache[audio_id]
@app.get("/api/audio")
async def list_audio():
"""List all generated audio files"""
return {
"audio_files": [
{
"audio_id": audio_id,
"text": info["text"][:50] + "..." if len(info["text"]) > 50 else info["text"],
"voice_name": info.get("voice_name", "Unknown"),
"duration": info["duration"],
"generated_at": info["generated_at"],
"real_chatterbox": info.get("real_chatterbox", False)
}
for audio_id, info in audio_cache.items()
],
"total": len(audio_cache)
}
# Gradio interface
def create_gradio_interface():
"""Create Gradio interface with voice management"""
def get_voice_choices():
"""Get voice choices for dropdown"""
choices = []
for voice_id, voice_info in voice_library.items():
voice_type = "πŸ”§" if voice_info["type"] == "builtin" else "🎭"
choices.append((f"{voice_type} {voice_info['name']} - {voice_info['description']}", voice_id))
return choices
def refresh_voice_choices():
"""Refresh voice dropdown"""
return gr.update(choices=get_voice_choices())
def create_voice_ui(voice_name, voice_description, audio_file):
"""Create voice from UI"""
try:
if not voice_name.strip():
return "❌ Please enter a voice name", gr.update()
if audio_file is None:
return "❌ Please upload an audio file", gr.update()
voice_id, voice_entry = create_voice_from_audio(
audio_file,
voice_name.strip(),
voice_description.strip() or "Custom voice"
)
if voice_id:
updated_choices = get_voice_choices()
return (
f"βœ… Voice '{voice_name}' created successfully!\n"
f"πŸ†” Voice ID: {voice_id}\n"
f"πŸ“ Audio saved and ready to use\n"
f"🎭 Available in voice selection dropdown",
gr.update(choices=updated_choices, value=voice_id)
)
else:
return "❌ Failed to create voice", gr.update()
except Exception as e:
logger.error(f"UI voice creation failed: {e}")
return f"❌ Voice creation failed: {str(e)}", gr.update()
def generate_speech_ui(text, voice_id, exag, temp, seed_val, cfg):
"""Generate speech from UI using voice ID"""
try:
if not text.strip():
return None, "❌ Please enter some text"
if len(text) > 300:
return None, "❌ Text too long (max 300 characters)"
if not voice_id or voice_id not in voice_library:
return None, "❌ Please select a valid voice"
start_time = time.time()
# Generate audio using voice ID
sample_rate, audio_data = generate_tts_audio(
text, voice_id, exag, temp, int(seed_val), cfg
)
generation_time = time.time() - start_time
duration = len(audio_data) / sample_rate
voice_name = voice_library[voice_id]["name"]
voice_type = voice_library[voice_id]["type"]
if CHATTERBOX_AVAILABLE:
status = f"""βœ… Real ChatterboxTTS synthesis completed!
🎭 Voice: {voice_name} ({voice_type})
⏱️ Generation time: {generation_time:.2f}s
🎡 Audio duration: {duration:.2f}s
πŸ“Š Sample rate: {sample_rate} Hz
πŸ”Š Audio samples: {len(audio_data):,}
"""
else:
status = f"""⚠️ Fallback audio generated (beep sound)
🚨 This is NOT real speech synthesis!
🎭 Voice: {voice_name} ({voice_type})
πŸ“¦ Upload ChatterboxTTS package for real synthesis
⏱️ Generation time: {generation_time:.2f}s
🎡 Audio duration: {duration:.2f}s
πŸ’‘ To fix: Upload your ChatterboxTTS files to this Space
"""
return (sample_rate, audio_data), status
except Exception as e:
logger.error(f"UI generation failed: {e}")
return None, f"❌ Generation failed: {str(e)}"
def delete_voice_ui(voice_id):
"""Delete voice from UI"""
try:
if not voice_id or voice_id not in voice_library:
return "❌ Please select a voice to delete", gr.update()
voice_info = voice_library[voice_id]
if voice_info.get("type") == "builtin":
return "❌ Cannot delete builtin voices", gr.update()
voice_name = voice_info["name"]
# Delete legacy audio file if it exists
if "audio_path" in voice_info and os.path.exists(voice_info["audio_path"]):
os.unlink(voice_info["audio_path"])
# Remove from library
del voice_library[voice_id]
save_voice_library()
updated_choices = get_voice_choices()
logger.info(f"βœ… UI: Deleted voice {voice_name} ({voice_id})")
return (
f"βœ… Voice '{voice_name}' deleted successfully",
gr.update(choices=updated_choices, value=updated_choices[0][1] if updated_choices else None)
)
except Exception as e:
logger.error(f"UI voice deletion failed: {e}")
return f"❌ Voice deletion failed: {str(e)}", gr.update()
with gr.Blocks(title="ChatterboxTTS Voice Manager", theme=gr.themes.Soft()) as demo:
# Status indicator at the top
if CHATTERBOX_AVAILABLE:
status_color = "green"
status_message = "βœ… Real ChatterboxTTS Loaded - Production Ready!"
else:
status_color = "orange"
status_message = "⚠️ Fallback Mode - Upload ChatterboxTTS Package for Real Synthesis"
gr.HTML(f"""
<div style="background-color: {status_color}; color: white; padding: 10px; border-radius: 5px; margin-bottom: 20px;">
<h3 style="margin: 0;">{status_message}</h3>
</div>
""")
gr.Markdown("""
# 🎡 ChatterboxTTS Voice Manager
**Advanced text-to-speech with custom voice cloning and voice library management**
""")
with gr.Tabs():
# Text-to-Speech Tab
with gr.TabItem("🎡 Generate Speech"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
value="Hello, this is ChatterboxTTS with custom voice cloning. I can speak in any voice you train me with!",
label="Text to synthesize (max 300 characters)",
max_lines=5,
placeholder="Enter your text here..."
)
voice_selector = gr.Dropdown(
label="🎭 Select Voice (πŸ”§ = builtin, 🎭 = custom)",
choices=get_voice_choices(),
value=list(voice_library.keys())[0] if voice_library else None,
interactive=True
)
with gr.Row():
generate_btn = gr.Button("🎡 Generate Speech", variant="primary")
refresh_voices_btn = gr.Button("πŸ”„ Refresh Voices", size="sm")
with gr.Row():
exaggeration = gr.Slider(
0.25, 2,
step=0.05,
label="Exaggeration (Controls expressiveness - 0.5 = neutral)",
value=0.5
)
cfg_weight = gr.Slider(
0.2, 1,
step=0.05,
label="CFG Weight (Controls pace and clarity)",
value=0.5
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
0.05, 5,
step=0.05,
label="Temperature (Controls randomness)",
value=0.8
)
seed = gr.Number(
value=0,
label="Seed (0 = random, set to non-zero for reproducible results)"
)
with gr.Column():
audio_output = gr.Audio(label="πŸ”Š Generated Speech")
status_text = gr.Textbox(
label="πŸ“Š Generation Status",
interactive=False,
lines=8,
placeholder="Select a voice and click 'Generate Speech' to start..."
)
# Voice Management Tab
with gr.TabItem("🎭 Voice Library"):
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ“š Available Voices")
voices_display = gr.HTML(
value=f"""
<div style="max-height: 300px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; border-radius: 5px;">
{''.join([f"<p><strong>{voice_info['name']}</strong> ({voice_info['type']})<br><small>{voice_info['description']}</small></p>" for voice_info in voice_library.values()])}
</div>
"""
)
gr.Markdown("### πŸ—‘οΈ Delete Voice")
delete_voice_selector = gr.Dropdown(
label="Select voice to delete",
choices=[(f"{info['name']} ({info['type']})", vid) for vid, info in voice_library.items() if info['type'] == 'custom'],
value=None
)
delete_voice_btn = gr.Button("πŸ—‘οΈ Delete Selected Voice", variant="stop")
delete_status = gr.Textbox(label="Delete Status", interactive=False)
with gr.Column():
gr.Markdown("### βž• Create New Voice")
new_voice_name = gr.Textbox(
label="Voice Name",
placeholder="e.g., 'John's Voice', 'Narrator Voice'",
value=""
)
new_voice_description = gr.Textbox(
label="Voice Description",
placeholder="e.g., 'Professional male voice', 'Warm female narrator'",
value=""
)
new_voice_audio = gr.Audio(
label="Upload Voice Sample (5-30 seconds of clear speech)",
type="numpy"
)
create_voice_btn = gr.Button("🎯 Create Voice", variant="primary")
create_status = gr.Textbox(
label="πŸ“Š Creation Status",
interactive=False,
lines=6
)
# Voice Library Info Tab
with gr.TabItem("πŸ“‹ Voice Guide"):
gr.Markdown(f"""
## 🎭 Voice Library Management
### πŸ“š Current Library Status
- **Total Voices**: {len(voice_library)}
- **Builtin Voices**: {len([v for v in voice_library.values() if v['type'] == 'builtin'])}
- **Custom Voices**: {len([v for v in voice_library.values() if v['type'] == 'custom'])}
### πŸ”§ Builtin Voices
These are pre-configured voices that come with the system:
{chr(10).join([f"- **{voice_info['name']}**: {voice_info['description']}" for voice_info in voice_library.values() if voice_info['type'] == 'builtin'])}
### 🎯 Creating Custom Voices
#### πŸ“ Best Practices:
1. **Audio Quality**: Use clear, noise-free recordings
2. **Duration**: 5-30 seconds of natural speech
3. **Content**: Normal conversational speech works best
4. **Format**: WAV, MP3, or FLAC files supported
5. **Voice Consistency**: Use the same speaker throughout
#### 🎀 Recording Tips:
- Record in a quiet environment
- Speak naturally and clearly
- Avoid background noise
- Use a decent microphone if possible
- Read a paragraph of normal text
#### πŸ”„ Voice Management:
- **Create**: Upload audio + provide name and description
- **Use**: Select from dropdown in speech generation
- **Delete**: Remove custom voices you no longer need
- **Persistent**: Custom voices are saved permanently
### πŸš€ Usage Workflow:
1. **Upload Voice Sample** β†’ Create custom voice
2. **Select Voice** β†’ Choose from library
3. **Generate Speech** β†’ Use selected voice for TTS
4. **Manage Library** β†’ Add, delete, organize voices
### πŸ”„ API Integration:
```python
# List voices
GET /api/voices
# Create voice
POST /api/voices/create
# Generate speech with voice
POST /api/tts/synthesize
{{
"text": "Hello world",
"voice_id": "your_voice_id"
}}
# Delete voice
DELETE /api/voices/voice_id
```
### πŸ’‘ Pro Tips:
- **Voice Naming**: Use descriptive names like "John_Professional" or "Sarah_Narrator"
- **Voice Testing**: Generate short test phrases after creating voices
- **Voice Backup**: Custom voices are saved to disk automatically
- **Voice Sharing**: Voice IDs can be shared via API
""")
# Event handlers
generate_btn.click(
fn=generate_speech_ui,
inputs=[text_input, voice_selector, exaggeration, temperature, seed, cfg_weight],
outputs=[audio_output, status_text]
)
refresh_voices_btn.click(
fn=refresh_voice_choices,
outputs=[voice_selector]
)
create_voice_btn.click(
fn=create_voice_ui,
inputs=[new_voice_name, new_voice_description, new_voice_audio],
outputs=[create_status, voice_selector]
)
delete_voice_btn.click(
fn=delete_voice_ui,
inputs=[delete_voice_selector],
outputs=[delete_status, voice_selector]
)
# System info with voice library status
model_status = "βœ… Real ChatterboxTTS" if CHATTERBOX_AVAILABLE else "⚠️ Fallback Model (Beep Sounds)"
chatterbox_status = "Available" if CHATTERBOX_AVAILABLE else "Missing - Upload Package"
gr.Markdown(f"""
### πŸ“Š System Status
- **Model**: {model_status}
- **Device**: {DEVICE}
- **ChatterboxTTS**: {chatterbox_status}
- **Voice Library**: {len(voice_library)} voices loaded
- **Storage**: {"βœ… Persistent (/data)" if VOICES_DIR.startswith("/data") else "⚠️ Temporary"}
- **Generated Files**: {len(audio_cache)}
{'''### πŸŽ‰ Production Ready!
Your ChatterboxTTS model is loaded with persistent voice management.''' if CHATTERBOX_AVAILABLE else '''### ⚠️ Action Required
**You're hearing beep sounds because ChatterboxTTS isn't loaded.**
Voice management is working with persistent storage, but you need ChatterboxTTS for real synthesis.'''}
""")
return demo
# Main execution
if __name__ == "__main__":
logger.info("πŸŽ‰ Starting ChatterboxTTS Voice Management Service...")
# Model status
if CHATTERBOX_AVAILABLE and MODEL:
model_status = "βœ… Real ChatterboxTTS Loaded"
elif MODEL:
model_status = "⚠️ Fallback Model (Upload ChatterboxTTS package for real synthesis)"
else:
model_status = "❌ No Model Loaded"
logger.info(f"Model Status: {model_status}")
logger.info(f"Device: {DEVICE}")
logger.info(f"ChatterboxTTS Available: {CHATTERBOX_AVAILABLE}")
logger.info(f"Voice Library: {len(voice_library)} voices loaded")
logger.info(f"Custom Voices: {len([v for v in voice_library.values() if v['type'] == 'custom'])}")
if not CHATTERBOX_AVAILABLE:
logger.warning("🚨 IMPORTANT: Upload your ChatterboxTTS package to enable real synthesis!")
# Always start FastAPI in background (both local and HF Spaces)
import uvicorn
import threading
def run_fastapi():
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
# Start FastAPI in background thread
api_thread = threading.Thread(target=run_fastapi, daemon=True)
api_thread.start()
logger.info("🌐 FastAPI Server: Starting on port 8000")
logger.info("πŸ“š API Documentation will be available")
logger.info("πŸ”— API Endpoints:")
logger.info(" - GET /api/voices")
logger.info(" - POST /api/voices/create")
logger.info(" - DELETE /api/voices/{voice_id}")
logger.info(" - POST /api/tts/synthesize")
logger.info(" - GET /api/audio/{audio_id}")
if os.getenv("SPACE_ID"):
# Running in Hugging Face Spaces
logger.info("🏠 Running in Hugging Face Spaces")
logger.info("πŸ”— API will be available at: https://[your-space-name].hf.space:8000")
logger.info("πŸ“– API Docs will be at: https://[your-space-name].hf.space:8000/docs")
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
else:
# Local development
logger.info("πŸ’» Running in Local Development")
logger.info("🌐 FastAPI: http://localhost:8000")
logger.info("πŸ“š API Docs: http://localhost:8000/docs")
logger.info("🎡 Gradio UI: http://localhost:7861")
# Start Gradio
demo = create_gradio_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7861
)