formiq / app.py
chandini2595's picture
added
210b4bb
raw
history blame
11.1 kB
import streamlit as st
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image
import io
import json
import pandas as pd
import plotly.express as px
import numpy as np
from typing import Dict, Any
import logging
import pytesseract
import re
from openai import OpenAI
import os
from pdf2image import convert_from_bytes
from dotenv import load_dotenv
from chatbot_utils import ask_receipt_chatbot
import time
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib
matplotlib.use('Agg')
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize OpenAI client for Perplexity
api_key = os.getenv('PERPLEXITY_API_KEY')
if not api_key:
st.error("""
⚠️ Perplexity API key not found! Please add your API key to the Space's secrets:
1. Go to Space Settings
2. Click on 'Repository secrets'
3. Add a new secret with name 'PERPLEXITY_API_KEY'
4. Add your Perplexity API key as the value
""")
st.stop()
client = OpenAI(
api_key=api_key,
base_url="https://api.perplexity.ai"
)
# Initialize LayoutLM model
@st.cache_resource
def load_model():
model_name = "microsoft/layoutlmv3-base"
processor = LayoutLMv3Processor.from_pretrained(model_name)
model = LayoutLMv3ForTokenClassification.from_pretrained(model_name)
return processor, model
def extract_json_from_llm_output(llm_result):
match = re.search(r'\{.*\}', llm_result, re.DOTALL)
if match:
return match.group(0)
return None
def extract_fields(image_path):
text = pytesseract.image_to_string(Image.open(image_path))
st.subheader("Raw OCR Output")
st.code(text)
# Improved Regex patterns for fields
patterns = {
"name": r"Mrs\s+\w+\s+\w+",
"date": r"Date[:\s]+([\d/]+)",
"product": r"\d+\s+\w+.*Style\s+\d+",
"amount_paid": r"Total Paid\s+\$?([\d.,]+)",
"receipt_no": r"Receipt No\.?\s*:?\s*(\d+)"
}
results = {}
for field, pattern in patterns.items():
match = re.search(pattern, text, re.IGNORECASE)
if match:
results[field] = match.group(1) if match.groups() else match.group(0)
else:
results[field] = None
# Extract all products
results["products"] = extract_products(text)
return results
def extract_products(text):
# This pattern matches lines like: "1076903 PISTACHIO 14.49"
product_pattern = r"\d{6,} ([A-Z0-9 ]+) (\d+\.\d{2})"
matches = re.findall(product_pattern, text)
products = [{"name": name.strip(), "price": float(price)} for name, price in matches]
return products
def extract_with_perplexity_llm(ocr_text):
prompt = f"""
You are an expert at extracting structured data from receipts.
From the following OCR text, extract these fields and return them as a flat JSON object with exactly these keys:
- name (customer name)
- date (date of purchase)
- amount_paid (total amount paid, or price if only one product)
- receipt_no (receipt number)
- product (the main product name, as a string; if multiple products, pick the most expensive or the only one)
**Note:** If the receipt has only one product, set 'product' to its name and 'amount_paid' to its price. If there is a 'price' and an 'amount paid', treat them as the same if they are equal.
Example output:
{{
"name": "Mrs. Genevieve Lopez",
"date": "12/13/2024",
"amount_paid": 579.18,
"receipt_no": "042085",
"product": "Wireless Airpods"
}}
Text:
\"\"\"{ocr_text}\"\"\"
"""
messages = [
{
"role": "system",
"content": "You are an AI assistant that extracts structured information from text."
},
{
"role": "user",
"content": prompt
}
]
response = client.chat.completions.create(
model="sonar-pro",
messages=messages
)
return response.choices[0].message.content
def save_to_dynamodb(data, table_name="Receipts"):
# ... existing code ...
# data["products"] is a list of dicts
table.put_item(Item=data)
def merge_extractions(regex_fields, llm_fields):
merged = {}
for key in ["name", "date", "amount_paid", "receipt_no"]:
merged[key] = llm_fields.get(key) or regex_fields.get(key)
merged["products"] = llm_fields.get("products") or regex_fields.get("products")
return merged
def main():
st.set_page_config(
page_title="FormIQ - Intelligent Document Parser",
page_icon="📄",
layout="wide"
)
st.title("FormIQ: Intelligent Document Parser")
st.markdown("""
Upload your documents to extract and validate information using advanced AI models.
""")
# Sidebar
with st.sidebar:
st.header("Settings")
document_type = st.selectbox(
"Document Type",
options=["invoice", "receipt", "form"],
index=0
)
confidence_threshold = st.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
st.markdown("---")
st.markdown("### About")
st.markdown("""
FormIQ uses LayoutLMv3 and Perplexity AI to extract and validate information from documents.
""")
# Receipt Chatbot in sidebar
st.markdown("---")
st.header("💬 Receipt Chatbot")
st.write("Ask questions about your receipts stored in DynamoDB.")
user_question = st.text_input("Enter your question:", "What is the total amount paid?")
if st.button("Ask Chatbot", key="sidebar_chatbot"):
with st.spinner("Getting answer from Perplexity LLM..."):
answer = ask_receipt_chatbot(user_question)
st.success(answer)
# Main content
uploaded_file = st.file_uploader(
"Upload Document",
type=["png", "jpg", "jpeg", "pdf"],
help="Upload a document image to process"
)
if uploaded_file is not None:
# Display uploaded image
if uploaded_file.type == "application/pdf":
images = convert_from_bytes(uploaded_file.read())
image = images[0] # Use the first page
else:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Document", width=600)
# Process button
if st.button("Process Document"):
with st.spinner("Processing document..."):
try:
# Save the uploaded file to a temporary location
temp_path = "temp_uploaded_image.jpg"
image.save(temp_path)
# Extract fields using OCR + regex
fields = extract_fields(temp_path)
# Extract with Perplexity LLM
with st.spinner("Extracting structured data with Perplexity LLM..."):
llm_result = extract_with_perplexity_llm(pytesseract.image_to_string(Image.open(temp_path)))
st.subheader("Structured Data (Perplexity LLM)")
st.json(llm_result)
# Try to parse the JSON from the LLM output
llm_data = {}
try:
llm_json = extract_json_from_llm_output(llm_result)
if llm_json:
llm_data = json.loads(llm_json)
# Save to DynamoDB
try:
save_to_dynamodb(llm_data)
st.success("Saved to DynamoDB!")
except Exception as e:
st.error(f"Failed to save to DynamoDB: {e}")
except Exception as e:
st.error(f"Failed to parse LLM output as JSON: {e}")
# Display extracted products if present
if "products" in llm_data and llm_data["products"]:
st.subheader("Products (LLM Extracted)")
st.dataframe(pd.DataFrame(llm_data["products"]))
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
st.error(f"Error processing document: {str(e)}")
st.header("Model Training & Evaluation Demo")
if st.button("Start Training"):
epochs = 10
num_classes = 3 # Example: 3 classes for confusion matrix
losses = []
val_losses = []
accuracies = []
progress = st.progress(0)
chart = st.line_chart({"Loss": [], "Val Loss": [], "Accuracy": []})
writer = SummaryWriter("logs")
for epoch in range(epochs):
# Simulate training
loss = np.exp(-epoch/5) + np.random.rand() * 0.05
val_loss = loss + np.random.rand() * 0.02
acc = 1 - loss + np.random.rand() * 0.02
losses.append(loss)
val_losses.append(val_loss)
accuracies.append(acc)
chart.add_rows({"Loss": [loss], "Val Loss": [val_loss], "Accuracy": [acc]})
progress.progress((epoch+1)/epochs)
st.write(f"Epoch {epoch+1}: Loss={loss:.4f}, Val Loss={val_loss:.4f}, Accuracy={acc:.4f}")
# Log to TensorBoard
writer.add_scalar("loss", loss, epoch)
writer.add_scalar("val_loss", val_loss, epoch)
writer.add_scalar("accuracy", acc, epoch)
# Simulate predictions and labels for confusion matrix
y_true = np.random.randint(0, num_classes, 100)
y_pred = y_true.copy()
y_pred[np.random.choice(100, 10, replace=False)] = np.random.randint(0, num_classes, 10)
cm = confusion_matrix(y_true, y_pred, labels=range(num_classes))
# Only log confusion matrix in the last epoch
if epoch == epochs - 1:
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
disp.plot(ax=ax)
plt.close(fig)
writer.add_figure("confusion_matrix", fig, epoch)
writer.close()
st.success("Training complete!")
# Show last confusion matrix in Streamlit
if 'cm' in locals():
st.subheader("Confusion Matrix (Last Epoch)")
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[f"Class {i}" for i in range(num_classes)])
disp.plot(ax=ax)
st.pyplot(fig)
else:
st.info("Confusion matrix not found.")
if __name__ == "__main__":
main()