Spaces:
Running
A newer version of the Gradio SDK is available:
5.32.1
Debug Guide for Auto Diffusers Config
This guide explains how to use the comprehensive debug logging system built into Auto Diffusers Config.
Quick Start
Enable Debug Logging
Set environment variables to control debug behavior:
# Enable debug logging
export DEBUG_LEVEL=DEBUG
export LOG_TO_FILE=true
export LOG_TO_CONSOLE=true
# Run the application
python launch_gradio.py
Debug Levels
DEBUG
: Most verbose, shows all operationsINFO
: Normal operations and status updatesWARNING
: Potential issues and fallbacksERROR
: Errors and failures only
Log Files
When LOG_TO_FILE=true
, logs are saved to the logs/
directory:
auto_diffusers_YYYYMMDD_HHMMSS.log
- Complete application logerrors_YYYYMMDD_HHMMSS.log
- Error-only log for quick issue identification
Component-Specific Debugging
Hardware Detection
import logging
from hardware_detector import HardwareDetector
logging.basicConfig(level=logging.DEBUG)
detector = HardwareDetector()
detector.print_specs()
Debug Output Includes:
- System platform and architecture detection
- GPU vendor identification (NVIDIA/AMD/Apple/Intel)
- VRAM measurement attempts
- PyTorch/CUDA/MPS availability checks
- Optimization profile selection logic
Memory Calculator
import logging
from simple_memory_calculator import SimpleMemoryCalculator
logging.basicConfig(level=logging.DEBUG)
calculator = SimpleMemoryCalculator()
result = calculator.get_model_memory_requirements("black-forest-labs/FLUX.1-schnell")
Debug Output Includes:
- Model memory lookup (known vs API estimation)
- HuggingFace API calls and responses
- File size analysis for unknown models
- Memory recommendation calculations
- Cache hit/miss operations
AI Code Generation
import logging
from auto_diffusers import AutoDiffusersGenerator
logging.basicConfig(level=logging.DEBUG)
generator = AutoDiffusersGenerator(api_key="your_key")
code = generator.generate_optimized_code(
model_name="black-forest-labs/FLUX.1-schnell",
prompt_text="A cat",
use_manual_specs=True,
manual_specs={...}
)
Debug Output Includes:
- Hardware specification processing
- Optimization profile selection
- Gemini API prompt construction
- API request/response timing
- Generated code length and validation
Gradio Interface
import logging
from gradio_app import GradioAutodiffusers
logging.basicConfig(level=logging.DEBUG)
app = GradioAutodiffusers()
Debug Output Includes:
- Component initialization status
- User input validation
- Model setting updates
- Interface event handling
Environment Variables
Control debug behavior without modifying code:
# Debug level (DEBUG, INFO, WARNING, ERROR)
export DEBUG_LEVEL=DEBUG
# File logging (true/false)
export LOG_TO_FILE=true
# Console logging (true/false)
export LOG_TO_CONSOLE=true
# API key (masked in logs for security)
export GOOGLE_API_KEY=your_api_key_here
Debug Utilities
System Information Logging
from debug_config import log_system_info
log_system_info()
Logs:
- Operating system and architecture
- Python version and executable path
- Environment variables (non-sensitive)
- Working directory and process ID
Session Boundary Marking
from debug_config import log_session_end
log_session_end()
Creates clear session boundaries in log files for easier analysis.
Common Debug Scenarios
1. API Connection Issues
Problem: Gemini API failures Debug Command:
DEBUG_LEVEL=DEBUG LOG_TO_FILE=true python -c "
from auto_diffusers import AutoDiffusersGenerator
import logging
logging.basicConfig(level=logging.DEBUG)
gen = AutoDiffusersGenerator('test_key')
"
Look For:
- API key validation messages
- Network connection attempts
- HTTP response codes and errors
2. Hardware Detection Problems
Problem: Wrong optimization profile selected Debug Command:
DEBUG_LEVEL=DEBUG python -c "
from hardware_detector import HardwareDetector
import logging
logging.basicConfig(level=logging.DEBUG)
detector = HardwareDetector()
print('Profile:', detector.get_optimization_profile())
"
Look For:
- GPU detection via nvidia-smi
- PyTorch CUDA/MPS availability
- VRAM measurement calculations
- Profile selection logic
3. Memory Calculation Issues
Problem: Incorrect memory recommendations Debug Command:
DEBUG_LEVEL=DEBUG python -c "
from simple_memory_calculator import SimpleMemoryCalculator
import logging
logging.basicConfig(level=logging.DEBUG)
calc = SimpleMemoryCalculator()
result = calc.get_model_memory_requirements('your_model_id')
"
Look For:
- Model lookup in known database
- HuggingFace API calls and file parsing
- Memory calculation formulas
- Recommendation generation logic
4. Code Generation Problems
Problem: Suboptimal generated code Debug Command:
DEBUG_LEVEL=DEBUG python launch_gradio.py
Look For:
- Hardware specs passed to AI
- Optimization profile selection
- Prompt construction details
- API response processing
Performance Debugging
Timing Analysis
Enable timestamp logging to identify performance bottlenecks:
import logging
import time
logger = logging.getLogger(__name__)
start_time = time.time()
# Your operation here
duration = time.time() - start_time
logger.info(f"Operation completed in {duration:.2f} seconds")
Memory Usage Tracking
Monitor memory consumption during processing:
import psutil
import logging
logger = logging.getLogger(__name__)
process = psutil.Process()
memory_before = process.memory_info().rss / 1024 / 1024 # MB
# Your operation here
memory_after = process.memory_info().rss / 1024 / 1024 # MB
logger.info(f"Memory usage: {memory_before:.1f}MB -> {memory_after:.1f}MB (Δ{memory_after-memory_before:+.1f}MB)")
Log Analysis Tips
1. Filter by Component
grep "auto_diffusers" logs/auto_diffusers_*.log
grep "hardware_detector" logs/auto_diffusers_*.log
grep "simple_memory_calculator" logs/auto_diffusers_*.log
2. Error-Only View
grep "ERROR" logs/auto_diffusers_*.log
# Or use the dedicated error log
cat logs/errors_*.log
3. Timing Analysis
grep "seconds" logs/auto_diffusers_*.log
4. API Interactions
grep -i "gemini\|api" logs/auto_diffusers_*.log
Troubleshooting Common Issues
Issue: No logs generated
Solution: Check write permissions for logs/
directory
Issue: Too verbose output
Solution: Set DEBUG_LEVEL=INFO
or LOG_TO_CONSOLE=false
Issue: Missing log files
Solution: Ensure LOG_TO_FILE=true
and check disk space
Issue: Logs consuming too much space
Solution: Implement log rotation or clean old logs periodically
Custom Debug Configuration
Create a custom debug setup for specific needs:
from debug_config import setup_debug_logging, configure_component_loggers
import logging
# Custom setup
setup_debug_logging(log_level='INFO', log_to_file=True, log_to_console=False)
# Modify specific component verbosity
logging.getLogger('simple_memory_calculator').setLevel(logging.DEBUG)
logging.getLogger('gradio').setLevel(logging.WARNING)
Security Notes
- API keys are automatically masked in logs (shown as length only)
- Sensitive user inputs are not logged
- Personal hardware information is logged for debugging but can be disabled
- Log files may contain model names and prompts - consider this for privacy
Getting Help
When reporting issues, include:
- Debug level used (
DEBUG_LEVEL
) - Relevant log snippets from error and main log files
- System information from
log_system_info()
output - Steps to reproduce the issue
The comprehensive logging system makes it easy to identify and resolve issues quickly!