aegwe4 / webui /components /basic_settings.py
chaowenguo's picture
Upload 121 files
3b13b0e verified
import traceback
import streamlit as st
import os
from app.config import config
from app.utils import utils
from loguru import logger
def render_basic_settings(tr):
"""渲染基础设置面板"""
with st.expander(tr("Basic Settings"), expanded=False):
config_panels = st.columns(3)
left_config_panel = config_panels[0]
middle_config_panel = config_panels[1]
right_config_panel = config_panels[2]
with left_config_panel:
render_language_settings(tr)
render_proxy_settings(tr)
with middle_config_panel:
render_vision_llm_settings(tr) # 视频分析模型设置
with right_config_panel:
render_text_llm_settings(tr) # 文案生成模型设置
def render_language_settings(tr):
st.subheader(tr("Proxy Settings"))
"""渲染语言设置"""
system_locale = utils.get_system_locale()
i18n_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n")
locales = utils.load_locales(i18n_dir)
display_languages = []
selected_index = 0
for i, code in enumerate(locales.keys()):
display_languages.append(f"{code} - {locales[code].get('Language')}")
if code == st.session_state.get('ui_language', system_locale):
selected_index = i
selected_language = st.selectbox(
tr("Language"),
options=display_languages,
index=selected_index
)
if selected_language:
code = selected_language.split(" - ")[0].strip()
st.session_state['ui_language'] = code
config.ui['language'] = code
def render_proxy_settings(tr):
"""渲染代理设置"""
# 获取当前代理状态
proxy_enabled = config.proxy.get("enabled", False)
proxy_url_http = config.proxy.get("http")
proxy_url_https = config.proxy.get("https")
# 添加代理开关
proxy_enabled = st.checkbox(tr("Enable Proxy"), value=proxy_enabled)
# 保存代理开关状态
# config.proxy["enabled"] = proxy_enabled
# 只有在代理启用时才显示代理设置输入框
if proxy_enabled:
HTTP_PROXY = st.text_input(tr("HTTP_PROXY"), value=proxy_url_http)
HTTPS_PROXY = st.text_input(tr("HTTPs_PROXY"), value=proxy_url_https)
if HTTP_PROXY and HTTPS_PROXY:
config.proxy["http"] = HTTP_PROXY
config.proxy["https"] = HTTPS_PROXY
os.environ["HTTP_PROXY"] = HTTP_PROXY
os.environ["HTTPS_PROXY"] = HTTPS_PROXY
# logger.debug(f"代理已启用: {HTTP_PROXY}")
else:
# 当代理被禁用时,清除环境变量和配置
os.environ.pop("HTTP_PROXY", None)
os.environ.pop("HTTPS_PROXY", None)
# config.proxy["http"] = ""
# config.proxy["https"] = ""
def test_vision_model_connection(api_key, base_url, model_name, provider, tr):
"""测试视觉模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
if provider.lower() == 'gemini':
import google.generativeai as genai
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
model.generate_content("直接回复我文本'当前网络可用'")
return True, tr("gemini model is available")
except Exception as e:
return False, f"{tr('gemini model is not available')}: {str(e)}"
elif provider.lower() == 'narratoapi':
import requests
try:
# 构建测试请求
headers = {
"Authorization": f"Bearer {api_key}"
}
test_url = f"{base_url.rstrip('/')}/health"
response = requests.get(test_url, headers=headers, timeout=10)
if response.status_code == 200:
return True, tr("NarratoAPI is available")
else:
return False, f"{tr('NarratoAPI is not available')}: HTTP {response.status_code}"
except Exception as e:
return False, f"{tr('NarratoAPI is not available')}: {str(e)}"
else:
from openai import OpenAI
try:
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
response = client.chat.completions.create(
model=model_name,
messages=[
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}],
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241022/emyrja/dog_and_girl.jpeg"
},
},
{"type": "text", "text": "回复我网络可用即可"},
],
},
],
)
if response and response.choices:
return True, tr("QwenVL model is available")
else:
return False, tr("QwenVL model returned invalid response")
except Exception as e:
# logger.debug(api_key)
# logger.debug(base_url)
# logger.debug(model_name)
return False, f"{tr('QwenVL model is not available')}: {str(e)}"
def render_vision_llm_settings(tr):
"""渲染视频分析模型设置"""
st.subheader(tr("Vision Model Settings"))
# 视频分析模型提供商选择
vision_providers = ['Siliconflow', 'Gemini', 'QwenVL', 'OpenAI']
saved_vision_provider = config.app.get("vision_llm_provider", "Gemini").lower()
saved_provider_index = 0
for i, provider in enumerate(vision_providers):
if provider.lower() == saved_vision_provider:
saved_provider_index = i
break
vision_provider = st.selectbox(
tr("Vision Model Provider"),
options=vision_providers,
index=saved_provider_index
)
vision_provider = vision_provider.lower()
config.app["vision_llm_provider"] = vision_provider
st.session_state['vision_llm_providers'] = vision_provider
# 获取已保存的视觉模型配置
vision_api_key = config.app.get(f"vision_{vision_provider}_api_key", "")
vision_base_url = config.app.get(f"vision_{vision_provider}_base_url", "")
vision_model_name = config.app.get(f"vision_{vision_provider}_model_name", "")
# 渲染视觉模型配置输入框
st_vision_api_key = st.text_input(tr("Vision API Key"), value=vision_api_key, type="password")
# 根据不同提供商设置默认值和帮助信息
if vision_provider == 'gemini':
st_vision_base_url = st.text_input(
tr("Vision Base URL"),
value=vision_base_url,
disabled=True,
help=tr("Gemini API does not require a base URL")
)
st_vision_model_name = st.text_input(
tr("Vision Model Name"),
value=vision_model_name or "gemini-2.0-flash-lite",
help=tr("Default: gemini-2.0-flash-lite")
)
elif vision_provider == 'qwenvl':
st_vision_base_url = st.text_input(
tr("Vision Base URL"),
value=vision_base_url,
help=tr("Default: https://dashscope.aliyuncs.com/compatible-mode/v1")
)
st_vision_model_name = st.text_input(
tr("Vision Model Name"),
value=vision_model_name or "qwen-vl-max-latest",
help=tr("Default: qwen-vl-max-latest")
)
else:
st_vision_base_url = st.text_input(tr("Vision Base URL"), value=vision_base_url)
st_vision_model_name = st.text_input(tr("Vision Model Name"), value=vision_model_name)
# 在配置输入框后添加测试按钮
if st.button(tr("Test Connection"), key="test_vision_connection"):
with st.spinner(tr("Testing connection...")):
success, message = test_vision_model_connection(
api_key=st_vision_api_key,
base_url=st_vision_base_url,
model_name=st_vision_model_name,
provider=vision_provider,
tr=tr
)
if success:
st.success(tr(message))
else:
st.error(tr(message))
# 保存视觉模型配置
if st_vision_api_key:
config.app[f"vision_{vision_provider}_api_key"] = st_vision_api_key
st.session_state[f"vision_{vision_provider}_api_key"] = st_vision_api_key
if st_vision_base_url:
config.app[f"vision_{vision_provider}_base_url"] = st_vision_base_url
st.session_state[f"vision_{vision_provider}_base_url"] = st_vision_base_url
if st_vision_model_name:
config.app[f"vision_{vision_provider}_model_name"] = st_vision_model_name
st.session_state[f"vision_{vision_provider}_model_name"] = st_vision_model_name
def test_text_model_connection(api_key, base_url, model_name, provider, tr):
"""测试文本模型连接
Args:
api_key: API密钥
base_url: 基础URL
model_name: 模型名称
provider: 提供商名称
Returns:
bool: 连接是否成功
str: 测试结果消息
"""
import requests
try:
# 构建统一的测试请求(遵循OpenAI格式)
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# 特殊处理Gemini
if provider.lower() == 'gemini':
import google.generativeai as genai
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
model.generate_content("直接回复我文本'当前网络可用'")
return True, tr("Gemini model is available")
except Exception as e:
return False, f"{tr('Gemini model is not available')}: {str(e)}"
else:
test_url = f"{base_url.rstrip('/')}/chat/completions"
# 构建测试消息
test_data = {
"model": model_name,
"messages": [
{"role": "user", "content": "直接回复我文本'当前网络可用'"}
],
"stream": False
}
# 发送测试请求
response = requests.post(
test_url,
headers=headers,
json=test_data,
)
# logger.debug(model_name)
# logger.debug(api_key)
# logger.debug(test_url)
if response.status_code == 200:
return True, tr("Text model is available")
else:
return False, f"{tr('Text model is not available')}: HTTP {response.status_code}"
except Exception as e:
logger.error(traceback.format_exc())
return False, f"{tr('Connection failed')}: {str(e)}"
def render_text_llm_settings(tr):
"""渲染文案生成模型设置"""
st.subheader(tr("Text Generation Model Settings"))
# 文案生成模型提供商选择
text_providers = ['OpenAI', 'Siliconflow', 'DeepSeek', 'Gemini', 'Qwen', 'Moonshot']
saved_text_provider = config.app.get("text_llm_provider", "OpenAI").lower()
saved_provider_index = 0
for i, provider in enumerate(text_providers):
if provider.lower() == saved_text_provider:
saved_provider_index = i
break
text_provider = st.selectbox(
tr("Text Model Provider"),
options=text_providers,
index=saved_provider_index
)
text_provider = text_provider.lower()
config.app["text_llm_provider"] = text_provider
# 获取已保存的文本模型配置
text_api_key = config.app.get(f"text_{text_provider}_api_key")
text_base_url = config.app.get(f"text_{text_provider}_base_url")
text_model_name = config.app.get(f"text_{text_provider}_model_name")
# 渲染文本模型配置输入框
st_text_api_key = st.text_input(tr("Text API Key"), value=text_api_key, type="password")
st_text_base_url = st.text_input(tr("Text Base URL"), value=text_base_url)
st_text_model_name = st.text_input(tr("Text Model Name"), value=text_model_name)
# 添加测试按钮
if st.button(tr("Test Connection"), key="test_text_connection"):
with st.spinner(tr("Testing connection...")):
success, message = test_text_model_connection(
api_key=st_text_api_key,
base_url=st_text_base_url,
model_name=st_text_model_name,
provider=text_provider,
tr=tr
)
if success:
st.success(message)
else:
st.error(message)
# 保存文本模型配置
if st_text_api_key:
config.app[f"text_{text_provider}_api_key"] = st_text_api_key
if st_text_base_url:
config.app[f"text_{text_provider}_base_url"] = st_text_base_url
if st_text_model_name:
config.app[f"text_{text_provider}_model_name"] = st_text_model_name
# # Cloudflare 特殊配置
# if text_provider == 'cloudflare':
# st_account_id = st.text_input(
# tr("Account ID"),
# value=config.app.get(f"text_{text_provider}_account_id", "")
# )
# if st_account_id:
# config.app[f"text_{text_provider}_account_id"] = st_account_id