Spaces:
Sleeping
Sleeping
File size: 11,923 Bytes
8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 7c4cea5 8879278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import streamlit as st
from typing import Dict, Tuple
# Constants
ONE_BR_UNITS = 23
TWO_BR_UNITS = 45
SOLAR_PANEL_RATING = 625 # W
SOLAR_PANEL_COST = 13000 # KSH per panel
BATTERY_CAPACITY = 200 # Ah
BATTERY_VOLTAGE = 12 # V
BATTERY_COST = 39000 # KSH per battery
SYSTEM_LOSSES = 0.20 # 20% system losses
GRID_COST_PER_KWH = 25 # KSH
FEED_IN_TARIFF = 12 # KSH per kWh sold back to grid
# Consumption estimates (kWh/month)
ONE_BR_CONSUMPTION = 250
TWO_BR_CONSUMPTION = 400
COMMON_AREA_CONSUMPTION = 1500 # For entire complex
def initialize_session_state():
"""Initialize session state variables"""
if "solar_panels" not in st.session_state:
st.session_state.solar_panels = 100
if "batteries" not in st.session_state:
st.session_state.batteries = 50
def calculate_consumption(one_br_occupancy: float, two_br_occupancy: float) -> float:
"""Calculate total monthly consumption based on occupancy rates"""
total_consumption = (
one_br_occupancy * ONE_BR_UNITS * ONE_BR_CONSUMPTION
+ two_br_occupancy * TWO_BR_UNITS * TWO_BR_CONSUMPTION
+ COMMON_AREA_CONSUMPTION
)
return total_consumption
def solar_production(panel_count: int, sun_hours: float = 5) -> float:
"""Calculate daily solar production considering losses"""
daily_production = (
panel_count * SOLAR_PANEL_RATING * sun_hours * (1 - SYSTEM_LOSSES) / 1000
) # kWh
monthly_production = daily_production * 30
return monthly_production
def battery_storage(battery_count: int) -> float:
"""Calculate usable battery storage considering losses"""
total_capacity = battery_count * BATTERY_CAPACITY * BATTERY_VOLTAGE / 1000 # kWh
usable_capacity = total_capacity * (1 - SYSTEM_LOSSES)
return usable_capacity
def financial_analysis(
monthly_consumption: float,
solar_production: float,
battery_capacity: float,
panel_count: int,
battery_count: int,
) -> Dict[str, float]:
"""
Calculate financial metrics including costs, savings, and ROI
"""
# Initial investment
panel_cost = panel_count * SOLAR_PANEL_COST
battery_cost = battery_count * BATTERY_COST
total_investment = panel_cost + battery_cost
# Energy calculations
solar_used = min(solar_production, monthly_consumption)
excess_solar = max(solar_production - monthly_consumption, 0)
grid_purchased = max(monthly_consumption - solar_used, 0)
# Battery can store excess or reduce grid purchases
battery_stored = min(excess_solar, battery_capacity)
battery_used = min(grid_purchased, battery_capacity)
# Final energy flows
final_grid_purchased = max(grid_purchased - battery_used, 0)
final_excess_solar = max(excess_solar - battery_stored, 0)
# Financial calculations
grid_cost = final_grid_purchased * GRID_COST_PER_KWH
feed_in_income = final_excess_solar * FEED_IN_TARIFF
savings = (monthly_consumption * GRID_COST_PER_KWH) - grid_cost + feed_in_income
return {
"total_investment": total_investment,
"monthly_savings": savings,
"annual_savings": savings * 12,
"simple_payback_years": (
total_investment / (savings * 12) if savings > 0 else float("inf")
),
"grid_purchased": final_grid_purchased,
"excess_solar": final_excess_solar,
"battery_utilization": (
(battery_used + battery_stored) / battery_capacity
if battery_capacity > 0
else 0
),
"solar_coverage": (
solar_used / monthly_consumption if monthly_consumption > 0 else 0
),
}
def plot_scenario_comparison(results: Dict[str, Dict[str, float]]):
"""Plot comparison of different occupancy scenarios"""
scenarios = list(results.keys())
# Prepare data for plotting
metrics = {
"Monthly Consumption (kWh)": [results[s]["consumption"] for s in scenarios],
"Solar Production (kWh)": [results[s]["solar_production"] for s in scenarios],
"Grid Purchased (kWh)": [
results[s]["financials"]["grid_purchased"] for s in scenarios
],
"Excess Solar (kWh)": [
results[s]["financials"]["excess_solar"] for s in scenarios
],
}
# Create figure
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
axes = axes.flatten()
for i, (title, values) in enumerate(metrics.items()):
axes[i].bar(scenarios, values, color=plt.cm.tab20(i))
axes[i].set_title(title)
axes[i].tick_params(axis="x", rotation=45)
# Add value labels
for j, v in enumerate(values):
axes[i].text(j, v * 1.02, f"{v:,.0f}", ha="center", va="bottom")
plt.tight_layout()
st.pyplot(fig)
def plot_financial_comparison(results: Dict[str, Dict[str, float]]):
"""Plot financial comparison across scenarios"""
scenarios = list(results.keys())
# Prepare financial data
financial_metrics = {
"Monthly Savings (Ksh)": [
results[s]["financials"]["monthly_savings"] for s in scenarios
],
"Solar Coverage (%)": [
results[s]["financials"]["solar_coverage"] * 100 for s in scenarios
],
"Payback Period (Years)": [
results[s]["financials"]["simple_payback_years"] for s in scenarios
],
"Battery Utilization (%)": [
results[s]["financials"]["battery_utilization"] * 100 for s in scenarios
],
}
# Create figure
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
axes = axes.flatten()
for i, (title, values) in enumerate(financial_metrics.items()):
if title == "Payback Period (Years)":
# For payback period, we'll do a horizontal bar chart
axes[i].barh(scenarios, values, color=plt.cm.tab20(3))
axes[i].set_xlabel(title)
# Add value labels
for j, v in enumerate(values):
if np.isfinite(v):
axes[i].text(v * 1.02, j, f"{v:.1f}", va="center")
else:
axes[i].text(0, j, "Never", va="center")
else:
axes[i].bar(scenarios, values, color=plt.cm.tab20(i + 4))
axes[i].set_title(title)
axes[i].tick_params(axis="x", rotation=45)
# Add value labels
for j, v in enumerate(values):
axes[i].text(j, v * 1.02, f"{v:,.1f}", ha="center", va="bottom")
plt.tight_layout()
st.pyplot(fig)
def main():
st.set_page_config(
page_title="Apartment Complex Solar Analysis", page_icon="🏢", layout="wide"
)
# Initialize session state
initialize_session_state()
# Main title and description
st.title("🏢 Apartment Complex Solar Energy Analysis")
st.markdown(
"""
This tool analyzes solar energy potential for a complex with:
- 45 two-bedroom units
- 23 one-bedroom units
Comparing three specific occupancy scenarios with 2BR at 100% occupancy and varying 1BR occupancy.
"""
)
# Sidebar for system configuration
with st.sidebar:
st.header("System Configuration")
st.session_state.solar_panels = st.number_input(
"Number of Solar Panels",
min_value=0,
max_value=1000,
value=st.session_state.solar_panels,
step=1,
)
st.session_state.batteries = st.number_input(
"Number of Batteries",
min_value=0,
max_value=500,
value=st.session_state.batteries,
step=1,
)
st.markdown("---")
st.markdown(
f"**Panel Specifications:** {SOLAR_PANEL_RATING}W @ Ksh{SOLAR_PANEL_COST:,} each"
)
st.markdown(
f"**Battery Specifications:** {BATTERY_CAPACITY}Ah @ Ksh{BATTERY_COST:,} each"
)
st.markdown(f"**System Losses:** {SYSTEM_LOSSES*100:.0f}%")
# Define the specific scenarios
scenarios = {
"1BR: 0%, 2BR: 100%": {"1br": 0.0, "2br": 1.0},
"1BR: 25%, 2BR: 100%": {"1br": 0.25, "2br": 1.0},
"1BR: 50%, 2BR: 100%": {"1br": 0.5, "2br": 1.0},
}
# Calculate results for each scenario
results = {}
for scenario, occupancy in scenarios.items():
# Calculate consumption and production
consumption = calculate_consumption(occupancy["1br"], occupancy["2br"])
production = solar_production(st.session_state.solar_panels)
storage = battery_storage(st.session_state.batteries)
# Financial analysis
financials = financial_analysis(
consumption,
production,
storage,
st.session_state.solar_panels,
st.session_state.batteries,
)
results[scenario] = {
"consumption": consumption,
"solar_production": production,
"battery_capacity": storage,
"financials": financials,
}
# Display system summary
st.subheader("System Summary")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Solar Panels", st.session_state.solar_panels)
col2.metric("Total Batteries", st.session_state.batteries)
col3.metric(
"Total Investment",
f"Ksh{(st.session_state.solar_panels * SOLAR_PANEL_COST + st.session_state.batteries * BATTERY_COST):,}",
)
col4.metric(
"Total Solar Capacity",
f"{st.session_state.solar_panels * SOLAR_PANEL_RATING / 1000:.1f} kW",
)
# Display scenario comparison
st.subheader("Scenario Comparison: Energy Flows")
plot_scenario_comparison(results)
st.subheader("Scenario Comparison: Financial Metrics")
plot_financial_comparison(results)
# Detailed results for each scenario
st.subheader("Detailed Results by Scenario")
for scenario, data in results.items():
with st.expander(f"Scenario: {scenario}"):
col1, col2, col3 = st.columns(3)
# Energy metrics
col1.metric("Monthly Consumption", f"{data['consumption']:,.0f} kWh")
col2.metric("Solar Production", f"{data['solar_production']:,.0f} kWh")
col3.metric("Battery Capacity", f"{data['battery_capacity']:,.1f} kWh")
# Financial metrics
col1.metric(
"Monthly Savings", f"Ksh{data['financials']['monthly_savings']:,.0f}"
)
col2.metric(
"Annual Savings", f"Ksh{data['financials']['annual_savings']:,.0f}"
)
payback = data["financials"]["simple_payback_years"]
payback_text = f"{payback:.1f} years" if np.isfinite(payback) else "Never"
col3.metric("Simple Payback Period", payback_text)
# Energy flow details
st.markdown("#### Energy Flow Details")
flow_data = {
"Metric": [
"Grid Purchased",
"Excess Solar",
"Solar Coverage",
"Battery Utilization",
],
"Value": [
f"{data['financials']['grid_purchased']:,.0f} kWh",
f"{data['financials']['excess_solar']:,.0f} kWh",
f"{data['financials']['solar_coverage']*100:.1f}%",
f"{data['financials']['battery_utilization']*100:.1f}%",
],
}
st.table(pd.DataFrame(flow_data))
if __name__ == "__main__":
main()
|