File size: 8,132 Bytes
6e5b74f
0fc7a46
 
 
 
 
9ce2bc6
1d1cc4d
9ce2bc6
 
 
 
8fcb305
1684436
aa274d7
 
c063398
0fc7a46
c063398
f042e30
 
9ce2bc6
 
0330034
aa274d7
4145ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c175a
aa274d7
 
 
 
 
024c79f
aa274d7
9ce2bc6
 
 
 
 
 
b3ccbc7
1684436
 
 
 
b3ccbc7
1684436
aa274d7
 
 
 
1684436
9ce2bc6
 
 
 
 
 
 
5bbdb7d
7a8e3f2
b3ccbc7
 
aa274d7
 
7a8e3f2
9ce2bc6
aa274d7
1d1cc4d
aa274d7
 
9ce2bc6
aa274d7
9ce2bc6
aa274d7
9ce2bc6
 
 
 
 
aa274d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684436
9ce2bc6
 
aa274d7
 
 
9ce2bc6
 
4145ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74e023b
4145ccd
 
 
 
 
 
 
 
 
 
 
 
 
c063398
f042e30
4145ccd
 
 
f042e30
4145ccd
 
 
 
ac8d8a4
 
 
 
4145ccd
 
 
ac8d8a4
4145ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c063398
9ce2bc6
 
 
 
aa274d7
9ce2bc6
 
 
aa274d7
 
 
0fc7a46
 
9ce2bc6
aa274d7
9ce2bc6
aa274d7
7a8e3f2
9ce2bc6
aa274d7
 
9ce2bc6
aa274d7
 
 
9ce2bc6
 
 
 
aa274d7
9ce2bc6
 
 
 
4145ccd
 
 
 
 
 
 
 
 
aa274d7
5e55cac
0fc7a46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from __future__ import annotations
from huggingface_hub import HfApi, snapshot_download
from concurrent.futures import ThreadPoolExecutor
import asyncio
import ast
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import StableDiffusionPipeline
import uuid

model_id = "Lykon/dreamshaper-xl-v2-turbo"
#DESCRIPTION = '''# Fast Stable Diffusion CPU with Latent Consistency Model
#Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine‑tune of SD v1-5.
#'''
#if not torch.cuda.is_available():
    #DESCRIPTION += "\n<p>running on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
DTYPE = torch.float32
api = HfApi()
executor = ThreadPoolExecutor()
model_cache = {}
















# Load pipeline once, disabling NSFW filter at construction time
pipe = StableDiffusionPipeline.from_pretrained(
    model_id,
    safety_checker=None,
    torch_dtype=DTYPE,
    use_safetensors=True
).to("cpu")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
    unique_name = str(uuid.uuid4()) + '.png'
    img.save(unique_name)
    return unique_name

def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
    with ThreadPoolExecutor() as executor:
        return list(executor.map(
            lambda args: save_image(*args),
            zip(image_array, [profile]*len(image_array), [metadata]*len(image_array))
        ))

def generate(
    prompt: str,
    seed: int = 0,
    width: int = 512,
    height: int = 512,
    guidance_scale: float = 8.0,
    num_inference_steps: int = 4,
    num_images: int = 1,
    randomize_seed: bool = False,
    progress = gr.Progress(track_tqdm=True),
    profile: gr.OAuthProfile | None = None,
) -> tuple[list[str], int]:
    # prepare seed
    seed = randomize_seed_fn(seed, randomize_seed)
    torch.manual_seed(seed)

    start_time = time.time()
    # **Call the pipeline with only supported kwargs:**
    outputs = pipe(
        prompt=prompt,
        negative_prompt="",               # required to avoid NoneType in UNet
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        output_type="pil",
    ).images

    latency = time.time() - start_time
    print(f"Generation took {latency:.2f} seconds")

    paths = save_images(
        outputs,
        profile,
        metadata={
            "prompt": prompt,
            "seed": seed,
            "width": width,
            "height": height,
            "guidance_scale": guidance_scale,
            "num_inference_steps": num_inference_steps,
        }
    )

    return paths, seed

examples = [
    "A futuristic cityscape at sunset",
    "Steampunk airship over mountains",
    "Portrait of a cyborg queen, hyper‑detailed",
]

























def validate_and_list_models(hfuser):
    try:
        models = api.list_models(author=hfuser)
        return [model.modelId for model in models if model.pipeline_tag == "text-to-image"]
    except Exception:
        return []

def parse_user_model_dict(user_model_dict_str):
    try:
        data = ast.literal_eval(user_model_dict_str)
        if isinstance(data, dict) and all(isinstance(v, list) for v in data.values()):
            return data
        return {}
    except Exception:
        return {}

def load_model(model_id):
    if model_id in model_cache:
        return f"{model_id} loaded from cache"
    try:
        path = snapshot_download(repo_id=model_id, cache_dir="model_cache", token=os.getenv("HF_TOKEN"))
        model_cache[model_id] = path
        return f"{model_id} loaded successfully"
    except Exception as e:
        return f"{model_id} failed to load: {str(e)}"

def run_models(models, parallel):
    if parallel:
        futures = [executor.submit(load_model, m) for m in models]
        return [f.result() for f in futures]
    else:
        return [load_model(m) for m in models]
#with gr.Blocks(css="style.css") as demo:
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                hfuser_input = gr.Textbox(label="Hugging Face Username")
                hfuser_models = gr.Dropdown(label="Models from User", choices=[], multiselect=True, visible=False)
                user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})")
            with gr.Row():
                run_btn = gr.Button("Load Models")
        with gr.Column(scale=3):        
            with gr.Row():
                parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True)
            with gr.Row():    
                output = gr.Textbox(label="Output", lines=3)
    with gr.Row():    
        gr.HTML(
            f"""
            <p id="project-links" align="center">
                <a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this app_demo py file</a>
                <p> this is currently running the Lykon/dreamshaper-xl-v2-turbo model</p>
                <p><fast stable diffusion, CPU</p>
            </p>
            """
        )
    #gr.Markdown(DESCRIPTION)    
    def update_models(hfuser):
        if hfuser:
            models = validate_and_list_models(hfuser)
            label = f"Models found: {len(models)}" 
            if len(models) > 0: 
                return gr.update(choices=models,  label=label, visible=True)    
            else:
                return gr.update(choices=models,  label=label, visible=False)        
        else:
            models = ''
            label = ''
            return gr.update(choices=models,  label=label, visible=False)

    def update_from_dict(dict_str):
        parsed = parse_user_model_dict(dict_str)
        if not parsed:
            return gr.update(), gr.update()
        hfuser = next(iter(parsed))
        models = parsed[hfuser]
        label = f"Models found: {len(models)}" 
        return gr.update(value=hfuser), gr.update(choices=models, value=models,  label=label)
        #return gr.update(value=hfuser), gr.update(choices=parsed[hfuser], value=parsed[hfuser])

    hfuser_input.change(update_models, hfuser_input, hfuser_models)
    user_model_dict.change(update_from_dict, user_model_dict, [hfuser_input, hfuser_models])
    run_btn.click(run_models, [hfuser_models, parallel_toggle], output)


    
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                placeholder="Enter your prompt",
                show_label=False,
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        gallery = gr.Gallery(
            label="Generated images",
            show_label=False,
            elem_id="gallery"
           
        )

    with gr.Accordion("Advanced options", open=False):
        seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed")
        randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
        with gr.Row():
            width = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Width")
            height = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Height")
        with gr.Row():
            guidance_scale = gr.Slider(2.0, 14.0, value=8.0, step=0.1, label="Guidance Scale")
            num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps")
        num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images")

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=gallery,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )



demo.launch()


'''#!/usr/bin/env python



    demo.queue()
    demo.launch()
'''