|
from concurrent.futures import ThreadPoolExecutor |
|
from pathlib import Path |
|
from typing import Optional |
|
import uuid |
|
from lcm.lcm_scheduler import LCMScheduler |
|
from lcm.lcm_pipeline import LatentConsistencyModelPipeline |
|
from lcm.lcm_i2i_pipeline import LatentConsistencyModelImg2ImgPipeline, LCMSchedulerWithTimestamp |
|
from diffusers.image_processor import PipelineImageInput |
|
|
|
|
|
|
|
import os |
|
import random |
|
import time |
|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image, PngImagePlugin |
|
import torch |
|
|
|
scheduler = LCMScheduler.from_pretrained( "charliebaby2023/cybrpny", subfolder="scheduler") |
|
|
|
pipe = LatentConsistencyModelPipeline.from_pretrained( |
|
"charliebaby2023/cybrpny", scheduler = scheduler, safety_checker = None) |
|
|
|
|
|
|
|
|
|
DESCRIPTION = '''# Latent Consistency Model |
|
Running [LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) | [Project Page](https://latent-consistency-models.github.io) | [Extension Page](https://github.com/0xbitches/sd-webui-lcm) |
|
''' |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
def save_image(img, metadata: dict): |
|
save_dir = './outputs/LCM-txt2img/' |
|
Path(save_dir).mkdir(exist_ok=True, parents=True) |
|
seed = metadata["seed"] |
|
unique_id = uuid.uuid4() |
|
filename = save_dir + f"{unique_id}-{seed}" + ".png" |
|
|
|
meta_tuples = [(k, str(v)) for k, v in metadata.items()] |
|
png_info = PngImagePlugin.PngInfo() |
|
for k, v in meta_tuples: |
|
png_info.add_text(k, v) |
|
img.save(filename, pnginfo=png_info) |
|
|
|
return filename |
|
|
|
|
|
def save_images(image_array, metadata: dict): |
|
paths = [] |
|
with ThreadPoolExecutor() as executor: |
|
paths = list(executor.map(save_image, image_array, |
|
[metadata]*len(image_array))) |
|
return paths |
|
|
|
|
|
def generate( |
|
prompt: str, |
|
seed: int = 0, |
|
width: int = 512, |
|
height: int = 512, |
|
guidance_scale: float = 8.0, |
|
num_inference_steps: int = 4, |
|
num_images: int = 4, |
|
randomize_seed: bool = False, |
|
use_fp16: bool = True, |
|
use_torch_compile: bool = False, |
|
use_cpu: bool = False, |
|
progress=gr.Progress(track_tqdm=True) |
|
) -> Image.Image: |
|
seed = randomize_seed_fn(seed, randomize_seed) |
|
torch.manual_seed(seed) |
|
|
|
selected_device = 'cuda' |
|
if use_cpu: |
|
selected_device = "cpu" |
|
if use_fp16: |
|
use_fp16 = False |
|
print("LCM warning: running on CPU, overrode FP16 with FP32") |
|
global pipe, scheduler |
|
pipe = LatentConsistencyModelPipeline( |
|
vae= pipe.vae, |
|
text_encoder = pipe.text_encoder, |
|
tokenizer = pipe.tokenizer, |
|
unet = pipe.unet, |
|
scheduler = scheduler, |
|
safety_checker = pipe.safety_checker, |
|
feature_extractor = pipe.feature_extractor, |
|
) |
|
|
|
|
|
|
|
if use_fp16: |
|
pipe.to(torch_device=selected_device, torch_dtype=torch.float16) |
|
else: |
|
pipe.to(torch_device=selected_device, torch_dtype=torch.float32) |
|
|
|
|
|
if os.name != 'nt' and use_torch_compile: |
|
pipe.unet = torch.compile(pipe.unet, mode='max-autotune') |
|
|
|
start_time = time.time() |
|
result = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images, |
|
original_inference_steps=50, |
|
output_type="pil", |
|
device = selected_device |
|
).images |
|
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width, |
|
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps}) |
|
|
|
elapsed_time = time.time() - start_time |
|
print("LCM inference time: ", elapsed_time, "seconds") |
|
return paths, seed |
|
|
|
|
|
|
|
examples = [ "" ] |
|
|
|
with gr.Blocks() as lcm: |
|
with gr.Tab("LCM txt2img"): |
|
gr.Markdown("Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference") |
|
gr.Markdown("Try the guide on Colab's free tier [](https://colab.research.google.com/github/R3gm/InsightSolver-Colab/blob/main/Latent_Consistency_Models.ipynb)") |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", |
|
show_label=False, |
|
lines=3, |
|
placeholder="Prompt", |
|
elem_classes=["prompt"]) |
|
run_button = gr.Button("Run", scale=0) |
|
with gr.Row(): |
|
result = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery", grid=[2], preview=True |
|
) |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
randomize=True |
|
) |
|
randomize_seed = gr.Checkbox( |
|
label="Randomize seed across runs", value=True) |
|
use_fp16 = gr.Checkbox( |
|
label="Run LCM in fp16 (for lower VRAM)", value=False) |
|
use_torch_compile = gr.Checkbox( |
|
label="Run LCM with torch.compile (currently not supported on Windows)", value=False) |
|
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale for base", |
|
minimum=2, |
|
maximum=14, |
|
step=0.1, |
|
value=8.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps for base", |
|
minimum=1, |
|
maximum=8, |
|
step=1, |
|
value=4, |
|
) |
|
with gr.Row(): |
|
num_images = gr.Slider( |
|
label="Number of images (batch count)", |
|
minimum=1, |
|
maximum=int(os.getenv("MAX_NUM_IMAGES")), |
|
step=1, |
|
value=1, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=generate |
|
) |
|
|
|
run_button.click( |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
num_images, |
|
randomize_seed, |
|
use_fp16, |
|
use_torch_compile, |
|
use_cpu |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
lcm.queue().launch() |