File size: 8,112 Bytes
3d9242d
 
 
950dc1a
3d9242d
 
 
 
 
 
 
 
 
 
950dc1a
3d9242d
950dc1a
 
 
3d9242d
950dc1a
 
 
 
 
 
 
 
 
 
3d9242d
 
4affd42
3d9242d
950dc1a
 
 
 
 
 
 
 
 
 
 
 
3d9242d
6a568bb
 
3d9242d
 
 
6a568bb
 
 
 
 
3d9242d
 
 
 
950dc1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d9242d
 
 
 
 
950dc1a
 
 
 
 
 
 
 
 
 
 
3d9242d
 
 
 
 
950dc1a
3d9242d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a568bb
 
 
 
3d9242d
 
 
 
e4ec800
 
 
950dc1a
 
 
 
 
 
 
 
 
 
 
 
 
 
e4ec800
950dc1a
 
 
 
 
 
 
 
 
 
 
 
 
 
e4ec800
3d9242d
 
 
 
950dc1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d9242d
 
 
 
 
950dc1a
3d9242d
950dc1a
3d9242d
 
 
 
950dc1a
3d9242d
 
 
 
950dc1a
3d9242d
 
 
950dc1a
3d9242d
e4ec800
 
 
3d9242d
 
950dc1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import json
import tempfile
import re
import os
from collections import defaultdict
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    pipeline,
)
import torch
from pyvis.network import Network

# -------------------------------
# 模型配置
# -------------------------------
# 使用环境变量配置模型名称,便于在Hugging Face上部署时修改
NER_MODEL_NAME = os.environ.get("NER_MODEL_NAME", "ckiplab/bert-base-chinese-ner")
REL_MODEL_NAME = os.environ.get("REL_MODEL_NAME", "hfl/chinese-roberta-wwm-ext")

# -------------------------------
# 实体识别模型(NER)
# -------------------------------
try:
    ner_tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME)
    ner_model = AutoModelForSequenceClassification.from_pretrained(NER_MODEL_NAME)
    ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
except Exception as e:
    print(f"NER模型加载失败: {e}")
    # 可以添加备选方案或错误处理逻辑

# -------------------------------
# 人物关系分类模型(使用 RoBERTa)
# -------------------------------
try:
    rel_tokenizer = AutoTokenizer.from_pretrained(REL_MODEL_NAME)
    rel_model = AutoModelForSequenceClassification.from_pretrained(
        REL_MODEL_NAME, 
        num_labels=6,  # 确保标签数量匹配
        id2label={0: "夫妻", 1: "父子", 2: "朋友", 3: "师生", 4: "同事", 5: "其他"},
        label2id={"夫妻": 0, "父子": 1, "朋友": 2, "师生": 3, "同事": 4, "其他": 5}
    )
    rel_model.eval()
except Exception as e:
    print(f"关系分类模型加载失败: {e}")
    # 可以添加备选方案或错误处理逻辑

# 关系分类的标签映射
relation_id2label = {
    0: "夫妻", 1: "父子", 2: "朋友", 3: "师生", 4: "同事", 5: "其他"
}

# 法律风险分析的标签映射
legal_id2label = {
    0: "无违法", 1: "赌博", 2: "毒品", 3: "色情", 4: "诈骗", 5: "暴力"
}

# -------------------------------
# 聊天输入解析
# -------------------------------
def parse_input_file(file):
    """解析聊天文件,支持JSON和TXT格式"""
    try:
        filename = file.name
        if filename.endswith(".json"):
            return json.load(file)
        elif filename.endswith(".txt"):
            content = file.read().decode("utf-8")
            lines = content.strip().splitlines()
            chat_data = []
            for line in lines:
                match = re.match(r"(\d{4}-\d{2}-\d{2}.*?) (.*?): (.*)", line)
                if match:
                    _, sender, message = match.groups()
                    chat_data.append({"sender": sender, "message": message})
            return chat_data
        else:
            raise ValueError("不支持的文件格式,请上传JSON或TXT文件")
    except Exception as e:
        print(f"文件解析错误: {e}")
        raise

# -------------------------------
# 实体提取函数
# -------------------------------
def extract_entities(text):
    """从文本中提取人物实体"""
    try:
        results = ner_pipeline(text)
        people = set()
        for r in results:
            if r["entity_group"] == "PER":
                people.add(r["word"])
        return list(people)
    except Exception as e:
        print(f"实体提取错误: {e}")
        return []

# -------------------------------
# 关系抽取函数(共现 + BERT 分类)
# -------------------------------
def extract_relations(chat_data, entities):
    """分析人物之间的关系"""
    relations = defaultdict(lambda: defaultdict(lambda: {"count": 0, "contexts": []}))

    for entry in chat_data:
        msg = entry["message"]
        found = [e for e in entities if e in msg]
        for i in range(len(found)):
            for j in range(i + 1, len(found)):
                e1, e2 = found[i], found[j]
                relations[e1][e2]["count"] += 1
                relations[e1][e2]["contexts"].append(msg)
                relations[e2][e1]["count"] += 1
                relations[e2][e1]["contexts"].append(msg)

    edges = []
    for e1 in relations:
        for e2 in relations[e1]:
            if e1 < e2:
                context_text = " ".join(relations[e1][e2]["contexts"])
                # 截断过长的文本
                max_context_length = 500  # 根据需要调整
                if len(context_text) > max_context_length:
                    context_text = context_text[:max_context_length] + "..."
                label = classify_relation_bert(e1, e2, context_text)
                edges.append((e1, e2, relations[e1][e2]["count"], label))
    return edges

# -------------------------------
# 法律风险分析(黄赌毒等)函数
# -------------------------------
def classify_relation_bert(e1, e2, context):
    """使用BERT模型分析人物关系"""
    try:
        prompt = f"{e1}{e2}的关系是?{context}"
        inputs = rel_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
        with torch.no_grad():
            logits = rel_model(**inputs).logits
        pred = torch.argmax(logits, dim=1).item()
        probs = torch.nn.functional.softmax(logits, dim=1)
        confidence = probs[0, pred].item()
        return f"{relation_id2label[pred]}(置信度 {confidence:.2f})"
    except Exception as e:
        print(f"关系分类错误: {e}")
        return "其他(置信度 0.00)"

def classify_illegal_behavior(chat_context):
    """分析聊天内容中的法律风险"""
    try:
        prompt = f"请分析以下聊天记录,判断是否涉及以下违法行为:赌博、毒品、色情、诈骗、暴力行为。\n聊天内容:{chat_context}\n请回答:"
        inputs = rel_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
        with torch.no_grad():
            logits = rel_model(**inputs).logits
        pred = torch.argmax(logits, dim=1).item()
        probs = torch.nn.functional.softmax(logits, dim=1)
        confidence = probs[0, pred].item()
        return f"违法行为判断结果:{legal_id2label.get(pred, '未知')}(置信度 {confidence:.2f})"
    except Exception as e:
        print(f"法律风险分析错误: {e}")
        return "违法行为判断结果:未知(置信度 0.00)"

# -------------------------------
# 图谱绘制
# -------------------------------
def draw_graph(entities, relations):
    """生成人物关系图谱"""
    try:
        g = Network(height="600px", width="100%", notebook=False)
        g.barnes_hut()
        for ent in entities:
            g.add_node(ent, label=ent)
        for e1, e2, weight, label in relations:
            g.add_edge(e1, e2, value=weight, title=f"{label}(互动{weight}次)", label=label)
        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".html")
        g.show(tmp_file.name)
        with open(tmp_file.name, 'r', encoding='utf-8') as f:
            return f.read()
    except Exception as e:
        print(f"图谱绘制错误: {e}")
        return "<h3>图谱生成失败</h3><p>请检查输入数据是否有效</p>"

# -------------------------------
# 主流程函数
# -------------------------------
def analyze_chat(file):
    """分析聊天记录的主函数"""
    if file is None:
        return "请上传聊天文件", "", "", ""
    
    try:
        content = parse_input_file(file)
    except Exception as e:
        return f"读取文件失败: {e}", "", "", ""

    text = "\n".join([entry["sender"] + ": " + entry["message"] for entry in content])
    entities = extract_entities(text)
    if not entities:
        return "未识别到任何人物实体", "", "", ""

    relations = extract_relations(content, entities)
    if not relations:
        return "未发现人物之间的关系", "", "", ""

    # 法律风险分析
    illegal_behavior_results = [classify_illegal_behavior(msg["message"]) for msg in content]

    graph_html = draw_graph(entities, relations)

    return str(entities), str(relations), graph_html, "\n".join(illegal_behavior_results)