GraphGen / graphgen /graphgen.py
github-actions[bot]
Auto-sync from demo at Thu Aug 28 10:06:44 UTC 2025
ba8b592
raw
history blame
14 kB
import asyncio
import os
import time
from dataclasses import dataclass, field
from typing import Dict, List, Union, cast
import gradio as gr
from tqdm.asyncio import tqdm as tqdm_async
from .models import (
Chunk,
JsonKVStorage,
JsonListStorage,
NetworkXStorage,
OpenAIModel,
Tokenizer,
TraverseStrategy,
)
from .models.storage.base_storage import StorageNameSpace
from .operators import (
extract_kg,
generate_cot,
judge_statement,
quiz,
search_all,
traverse_graph_atomically,
traverse_graph_by_edge,
traverse_graph_for_multi_hop,
)
from .utils import (
compute_content_hash,
create_event_loop,
format_generation_results,
logger,
read_file,
)
sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
@dataclass
class GraphGen:
unique_id: int = int(time.time())
working_dir: str = os.path.join(sys_path, "cache")
config: Dict = field(default_factory=dict)
# llm
tokenizer_instance: Tokenizer = None
synthesizer_llm_client: OpenAIModel = None
trainee_llm_client: OpenAIModel = None
# text chunking
# TODO: make it configurable
chunk_size: int = 1024
chunk_overlap_size: int = 100
# search
search_config: dict = field(
default_factory=lambda: {"enabled": False, "search_types": ["wikipedia"]}
)
# traversal
traverse_strategy: TraverseStrategy = None
# webui
progress_bar: gr.Progress = None
def __post_init__(self):
self.tokenizer_instance: Tokenizer = Tokenizer(
model_name=self.config["tokenizer"]
)
self.synthesizer_llm_client: OpenAIModel = OpenAIModel(
model_name=os.getenv("SYNTHESIZER_MODEL"),
api_key=os.getenv("SYNTHESIZER_API_KEY"),
base_url=os.getenv("SYNTHESIZER_BASE_URL"),
tokenizer_instance=self.tokenizer_instance,
)
self.trainee_llm_client: OpenAIModel = OpenAIModel(
model_name=os.getenv("TRAINEE_MODEL"),
api_key=os.getenv("TRAINEE_API_KEY"),
base_url=os.getenv("TRAINEE_BASE_URL"),
tokenizer_instance=self.tokenizer_instance,
)
self.search_config = self.config["search"]
if "traverse_strategy" in self.config:
self.traverse_strategy = TraverseStrategy(
**self.config["traverse_strategy"]
)
self.full_docs_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="full_docs"
)
self.text_chunks_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="text_chunks"
)
self.graph_storage: NetworkXStorage = NetworkXStorage(
self.working_dir, namespace="graph"
)
self.search_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="search"
)
self.rephrase_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="rephrase"
)
self.qa_storage: JsonListStorage = JsonListStorage(
os.path.join(self.working_dir, "data", "graphgen", str(self.unique_id)),
namespace=f"qa-{self.unique_id}",
)
async def async_split_chunks(
self, data: List[Union[List, Dict]], data_type: str
) -> dict:
# TODO: configurable whether to use coreference resolution
if len(data) == 0:
return {}
inserting_chunks = {}
if data_type == "raw":
assert isinstance(data, list) and isinstance(data[0], dict)
# compute hash for each document
new_docs = {
compute_content_hash(doc["content"], prefix="doc-"): {
"content": doc["content"]
}
for doc in data
}
_add_doc_keys = await self.full_docs_storage.filter_keys(
list(new_docs.keys())
)
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All docs are already in the storage")
return {}
logger.info("[New Docs] inserting %d docs", len(new_docs))
cur_index = 1
doc_number = len(new_docs)
async for doc_key, doc in tqdm_async(
new_docs.items(), desc="[1/4]Chunking documents", unit="doc"
):
chunks = {
compute_content_hash(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_key,
}
for dp in self.tokenizer_instance.chunk_by_token_size(
doc["content"], self.chunk_overlap_size, self.chunk_size
)
}
inserting_chunks.update(chunks)
if self.progress_bar is not None:
self.progress_bar(cur_index / doc_number, f"Chunking {doc_key}")
cur_index += 1
_add_chunk_keys = await self.text_chunks_storage.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
elif data_type == "chunked":
assert isinstance(data, list) and isinstance(data[0], list)
new_docs = {
compute_content_hash("".join(chunk["content"]), prefix="doc-"): {
"content": "".join(chunk["content"])
}
for doc in data
for chunk in doc
}
_add_doc_keys = await self.full_docs_storage.filter_keys(
list(new_docs.keys())
)
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All docs are already in the storage")
return {}
logger.info("[New Docs] inserting %d docs", len(new_docs))
async for doc in tqdm_async(
data, desc="[1/4]Chunking documents", unit="doc"
):
doc_str = "".join([chunk["content"] for chunk in doc])
for chunk in doc:
chunk_key = compute_content_hash(chunk["content"], prefix="chunk-")
inserting_chunks[chunk_key] = {
**chunk,
"full_doc_id": compute_content_hash(doc_str, prefix="doc-"),
}
_add_chunk_keys = await self.text_chunks_storage.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
else:
raise ValueError(f"Unknown data type: {data_type}")
await self.full_docs_storage.upsert(new_docs)
await self.text_chunks_storage.upsert(inserting_chunks)
return inserting_chunks
def insert(self):
loop = create_event_loop()
loop.run_until_complete(self.async_insert())
async def async_insert(self):
"""
insert chunks into the graph
"""
input_file = self.config["input_file"]
data_type = self.config["input_data_type"]
data = read_file(input_file)
inserting_chunks = await self.async_split_chunks(data, data_type)
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks))
logger.info("[Entity and Relation Extraction]...")
_add_entities_and_relations = await extract_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
tokenizer_instance=self.tokenizer_instance,
chunks=[
Chunk(id=k, content=v["content"]) for k, v in inserting_chunks.items()
],
progress_bar=self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning("No entities or relations extracted")
return
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_instance in [
self.full_docs_storage,
self.text_chunks_storage,
self.graph_storage,
self.search_storage,
]:
if storage_instance is None:
continue
tasks.append(cast(StorageNameSpace, storage_instance).index_done_callback())
await asyncio.gather(*tasks)
def search(self):
loop = create_event_loop()
loop.run_until_complete(self.async_search())
async def async_search(self):
logger.info(
"Search is %s", "enabled" if self.search_config["enabled"] else "disabled"
)
if self.search_config["enabled"]:
logger.info(
"[Search] %s ...", ", ".join(self.search_config["search_types"])
)
all_nodes = await self.graph_storage.get_all_nodes()
all_nodes_names = [node[0] for node in all_nodes]
new_search_entities = await self.full_docs_storage.filter_keys(
all_nodes_names
)
logger.info(
"[Search] Found %d entities to search", len(new_search_entities)
)
_add_search_data = await search_all(
search_types=self.search_config["search_types"],
search_entities=new_search_entities,
)
if _add_search_data:
await self.search_storage.upsert(_add_search_data)
logger.info("[Search] %d entities searched", len(_add_search_data))
# Format search results for inserting
search_results = []
for _, search_data in _add_search_data.items():
search_results.extend(
[
{"content": search_data[key]}
for key in list(search_data.keys())
]
)
# TODO: fix insert after search
await self.async_insert()
def quiz(self):
loop = create_event_loop()
loop.run_until_complete(self.async_quiz())
async def async_quiz(self):
max_samples = self.config["quiz_and_judge_strategy"]["quiz_samples"]
await quiz(
self.synthesizer_llm_client,
self.graph_storage,
self.rephrase_storage,
max_samples,
)
await self.rephrase_storage.index_done_callback()
def judge(self):
loop = create_event_loop()
loop.run_until_complete(self.async_judge())
async def async_judge(self):
re_judge = self.config["quiz_and_judge_strategy"]["re_judge"]
_update_relations = await judge_statement(
self.trainee_llm_client,
self.graph_storage,
self.rephrase_storage,
re_judge,
)
await _update_relations.index_done_callback()
def traverse(self):
loop = create_event_loop()
loop.run_until_complete(self.async_traverse())
async def async_traverse(self):
output_data_type = self.config["output_data_type"]
if output_data_type == "atomic":
results = await traverse_graph_atomically(
self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar,
)
elif output_data_type == "multi_hop":
results = await traverse_graph_for_multi_hop(
self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar,
)
elif output_data_type == "aggregated":
results = await traverse_graph_by_edge(
self.synthesizer_llm_client,
self.tokenizer_instance,
self.graph_storage,
self.traverse_strategy,
self.text_chunks_storage,
self.progress_bar,
)
else:
raise ValueError(f"Unknown qa_form: {output_data_type}")
results = format_generation_results(
results, output_data_format=self.config["output_data_format"]
)
await self.qa_storage.upsert(results)
await self.qa_storage.index_done_callback()
def generate_reasoning(self, method_params):
loop = create_event_loop()
loop.run_until_complete(self.async_generate_reasoning(method_params))
async def async_generate_reasoning(self, method_params):
results = await generate_cot(
self.graph_storage,
self.synthesizer_llm_client,
method_params=method_params,
)
results = format_generation_results(
results, output_data_format=self.config["output_data_format"]
)
await self.qa_storage.upsert(results)
await self.qa_storage.index_done_callback()
def clear(self):
loop = create_event_loop()
loop.run_until_complete(self.async_clear())
async def async_clear(self):
await self.full_docs_storage.drop()
await self.text_chunks_storage.drop()
await self.search_storage.drop()
await self.graph_storage.clear()
await self.rephrase_storage.drop()
await self.qa_storage.drop()
logger.info("All caches are cleared")