Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,353 Bytes
4c954ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
from collections import defaultdict
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import time
from ..backbones import build_backbone
from .hafm import HAFMencoder
from .losses import *
import math
import cv2
import matplotlib.pyplot as plt
class ScaleLSD(nn.Module):
def __init__(self, gray_scale=False, use_layer_scale=False, enable_attention_hooks=False):
super(ScaleLSD, self).__init__()
num_junctions_inference = 512
junction_threshold_hm = 0.008
self.distance_threshold = 5.0
self.hafm_encoder = HAFMencoder(dis_th=self.distance_threshold)
# self.backbone = build_backbone(gray_scale=gray_scale, use_layer_scale=use_layer_scale)
self.backbone = build_backbone(gray_scale=gray_scale, use_layer_scale=use_layer_scale, enable_attention_hooks=enable_attention_hooks)
self.j2l_threshold = 10
self.num_residuals = 0
self.loss = nn.CrossEntropyLoss(reduction='none')
self.bce_loss = nn.BCEWithLogitsLoss(reduction='none')
self.stride = self.backbone.stride
self.train_step = 0
@classmethod
def configure(cls, opts):
try:
cls.num_junctions_inference = opts.num_junctions
cls.junction_threshold_hm = opts.junction_hm
except:
pass
@classmethod
def cli(cls, parser):
try:
parser.add_argument('-nj', '--num-junctions', default=512, type=int, help='number of junctions')
parser.add_argument('-jh', '--junction-hm', default=0.008, type=float, help='junction threshold heatmap')
except:
pass
def hafm_decoding(self,md_maps, dis_maps, residual_maps, scale=5.0, flatten = True, return_points = False):
device = md_maps.device
scale = self.distance_threshold
batch_size, _, height, width = md_maps.shape
_y = torch.arange(0,height,device=device).float()
_x = torch.arange(0,width, device=device).float()
y0, x0 =torch.meshgrid(_y, _x,indexing='ij')
y0 = y0[None,None]
x0 = x0[None,None]
sign_pad = torch.arange(-self.num_residuals,self.num_residuals+1,device=device,dtype=torch.float32).reshape(1,-1,1,1)
if residual_maps is not None:
residual = residual_maps*sign_pad
distance_fields = dis_maps + residual
else:
distance_fields = dis_maps
distance_fields = distance_fields.clamp(min=0,max=1.0)
md_un = (md_maps[:,:1] - 0.5)*np.pi*2
st_un = md_maps[:,1:2]*np.pi/2.0
ed_un = -md_maps[:,2:3]*np.pi/2.0
cs_md = md_un.cos()
ss_md = md_un.sin()
y_st = torch.tan(st_un)
y_ed = torch.tan(ed_un)
x_st_rotated = (cs_md - ss_md*y_st)*distance_fields*scale
y_st_rotated = (ss_md + cs_md*y_st)*distance_fields*scale
x_ed_rotated = (cs_md - ss_md*y_ed)*distance_fields*scale
y_ed_rotated = (ss_md + cs_md*y_ed)*distance_fields*scale
x_st_final = (x_st_rotated + x0).clamp(min=0,max=width-1)
y_st_final = (y_st_rotated + y0).clamp(min=0,max=height-1)
x_ed_final = (x_ed_rotated + x0).clamp(min=0,max=width-1)
y_ed_final = (y_ed_rotated + y0).clamp(min=0,max=height-1)
lines = torch.stack((x_st_final,y_st_final,x_ed_final,y_ed_final),dim=-1)
if flatten:
lines = lines.reshape(batch_size,-1,4)
if return_points:
points = torch.stack((x0,y0),dim=-1)
points = points.repeat((batch_size,2*self.num_residuals+1,1,1,1))
if flatten:
points = points.reshape(batch_size,-1,2)
return lines, points
return lines
@staticmethod
def non_maximum_suppression(a, kernel_size=3):
ap = F.max_pool2d(a, kernel_size, stride=1, padding=kernel_size//2)
mask = (a == ap).float().clamp(min=0.0)
return a * mask
@staticmethod
def get_junctions(jloc, joff, topk = 300, th=0):
height, width = jloc.size(1), jloc.size(2)
jloc = jloc.reshape(-1)
joff = joff.reshape(2, -1)
scores, index = torch.topk(jloc, k=topk)
# y = (index // width).float() + torch.gather(joff[1], 0, index) + 0.5
y = torch.div(index,width,rounding_mode='trunc').float()+ torch.gather(joff[1], 0, index) + 0.5
x = (index % width).float() + torch.gather(joff[0], 0, index) + 0.5
junctions = torch.stack((x, y)).t()
if th>0 :
return junctions[scores>th], scores[scores>th]
else:
return junctions, scores
def wireframe_matcher(self, juncs_pred, lines_pred, hat_points, is_train=False):
cost1 = torch.sum((lines_pred[:,:2]-juncs_pred[:,None])**2,dim=-1)
cost2 = torch.sum((lines_pred[:,2:]-juncs_pred[:,None])**2,dim=-1)
dis1, idx_junc_to_end1 = cost1.min(dim=0)
dis2, idx_junc_to_end2 = cost2.min(dim=0)
length = torch.sum((lines_pred[:,:2]-lines_pred[:,2:])**2,dim=-1)
idx_junc_to_end_min = torch.min(idx_junc_to_end1,idx_junc_to_end2)
idx_junc_to_end_max = torch.max(idx_junc_to_end1,idx_junc_to_end2)
iskeep = idx_junc_to_end_min < idx_junc_to_end_max ## not the same junction
if self.j2l_threshold>0:
iskeep *= (dis1<self.j2l_threshold)*(dis2<self.j2l_threshold)
idx_lines_for_junctions = torch.stack((idx_junc_to_end_min[iskeep],idx_junc_to_end_max[iskeep]),dim=1)#.unique(dim=0)
global_idx = idx_lines_for_junctions[:,0]*juncs_pred.shape[0]+idx_lines_for_junctions[:,1]
argsort = torch.argsort(global_idx)
unique, counts = torch.unique(global_idx[argsort],return_counts=True)
lines_support = torch.split(lines_pred[iskeep][argsort],counts.tolist())
hat_points = hat_points[iskeep][argsort]
hat_points = torch.split(hat_points,counts.tolist())
# ux = unique//juncs_pred.shape[0]
ux = torch.div(unique, juncs_pred.shape[0], rounding_mode='trunc')
uy = unique%juncs_pred.shape[0]
uxy = torch.stack((ux,uy),dim=1)
lines_adjusted = juncs_pred[uxy].reshape(-1,4)
return lines_adjusted, uxy, lines_support, hat_points, counts
def forward_backbone(self, images):
outputs, features = self.backbone(images)
if isinstance(outputs, list):
auxputs = outputs[1:]
outputs = outputs[0]
else:
auxputs = []
return outputs, features, auxputs
@torch.no_grad()
def detect_junctions(self, images, junction_heatmaps = None):
device = images.device
output, features, aux = self.forward_backbone(images)
joff_pred = output[:,7:9].sigmoid()-0.5
if junction_heatmaps is None:
jloc_pred = output[:,5:7].softmax(1)[:,1:]
else:
jloc_pred = junction_heatmaps
batch_size = images.shape[0]
junctions_batch = []
for i in range(batch_size):
jloc_pred_nms = self.non_maximum_suppression(jloc_pred[i])
junctions, scores = self.get_junctions(jloc_pred_nms,joff_pred[i], topk=self.num_junctions_inference,th=self.junction_threshold_hm)
junctions_batch.append(junctions)
return junctions_batch
@torch.no_grad()
def compute_hatlines(self, images):
device = images.device
output, features, aux = self.forward_backbone(images)
md_pred = output[:,:3].sigmoid()
dis_pred = output[:,3:4].sigmoid()
res_pred = output[:,4:5].sigmoid()
lines_pred_batch, hat_points_batch = self.hafm_decoding(md_pred, dis_pred, None, flatten = True, return_points=True)
return lines_pred_batch, hat_points_batch
def forward(self, images, annotations = None, targets = None):
if self.training:
return self.forward_train(images, annotations=annotations)
else:
return self.forward_test(images, annotations=annotations)
def compute_loss(self, output, targets, mask, loss_dict):
# for nstack, output in enumerate(outputs):
loss_map = torch.mean(F.l1_loss(output[:,:3].sigmoid(), targets['md'],reduction='none'),dim=1,keepdim=True)
loss_dict['loss_md'] += torch.mean(loss_map*mask) / (torch.mean(mask)+1e-6)
loss_map = F.l1_loss(output[:,3:4].sigmoid(), targets['dis'], reduction='none')
loss_dict['loss_dis'] += torch.mean(loss_map*mask) / (torch.mean(mask)+1e-6)
loss_residual_map = F.l1_loss(output[:,4:5].sigmoid(), loss_map, reduction='none')
loss_dict['loss_res'] += torch.mean(loss_residual_map*mask)/(torch.mean(mask)+1e-6)
loss_dict['loss_jloc'] += cross_entropy_loss_for_junction(output[:,5:7], targets['jloc'])
loss_dict['loss_joff'] += sigmoid_l1_loss(output[:,7:9], targets['joff'], -0.5, targets['jloc'])
return loss_dict
def forward_train(self, images, annotations = None):
batch_size = images.size(0)
self.train_step += 1
valid_mask = annotations['valid_mask']
targets , metas = self.hafm_encoder(annotations)
outputs, features, auxputs = self.forward_backbone(images)
loss_dict = {
'loss_md': 0.0,
'loss_dis': 0.0,
'loss_res': 0.0,
'loss_jloc': 0.0,
'loss_joff': 0.0,
}
extra_info = defaultdict(list)
mask = targets['mask']
loss_dict = self.compute_loss(outputs, targets, mask, loss_dict)
if len(auxputs)>0:
for auxput in auxputs:
loss_dict = self.compute_loss(auxput, targets, mask, loss_dict)
for key in extra_info.keys():
extra_info[key] = extra_info[key]/batch_size
return loss_dict, extra_info
@torch.no_grad()
def forward_test(self, images, annotations=None, merge=False):
device = images.device
batch_size, _, height, width = images.shape
outputs, features, aux = self.forward_backbone(images)
if "use_lsd" not in annotations.keys():
annotations["use_lsd"] = True
# use lsd for theta prediction
if annotations['use_lsd']:
ws = images.shape[3]//self.stride
hs = images.shape[2]//self.stride
lsd = cv2.createLineSegmentDetector(0)
md_lsd_batch = []
dis_lsd_batch = []
for i in range(batch_size):
image = np.array(images[i,0].cpu().numpy()*255,dtype=np.uint8)
lsd_lines = lsd.detect(image)[0].reshape(-1,4)
# transform lsd lines to lsd-hat-field
md_lsd, dis_lsd, _ = self.hafm_encoder.lines2hafm(torch.from_numpy(lsd_lines).to(images.device)/self.stride, hs, ws)
md_lsd_batch.append(md_lsd)
dis_lsd_batch.append(dis_lsd)
md_pred = torch.stack(md_lsd_batch, dim=0)
dis_pred = torch.stack(dis_lsd_batch, dim=0)
# for junctions/endpoints extraction
md_pred[:,1:3] = outputs[:,1:3].sigmoid()
# dist
dis_pred = outputs[:,3:4].sigmoid()
jloc_pred= outputs[:,5:7].softmax(1)[:,1:]
joff_pred= outputs[:,7:9].sigmoid() - 0.5
else:
md_pred = outputs[:,:3].sigmoid()
dis_pred = outputs[:,3:4].sigmoid()
res_pred = outputs[:,4:5].sigmoid()
jloc_pred= outputs[:,5:7].softmax(1)[:,1:]
jloc_logits = outputs[:,5:7].softmax(1)
joff_pred= outputs[:,7:9].sigmoid() - 0.5
lines_pred_batch, hat_points_batch = self.hafm_decoding(md_pred, dis_pred, None, flatten = True, return_points=True)
output_list = []
graph_pred = torch.zeros((batch_size, self.num_junctions_inference, self.num_junctions_inference), device=images.device)
for i in range(batch_size):
if annotations['use_nms']:
jloc_pred_nms = self.non_maximum_suppression(jloc_pred[i])
else:
jloc_pred_nms = self.non_maximum_suppression(jloc_pred[i], kernel_size=1)
topK = min(self.num_junctions_inference, int((jloc_pred_nms>self.junction_threshold_hm).float().sum().item()))
juncs_pred, juncs_score = self.get_junctions(jloc_pred_nms,joff_pred[i], topk=topK, th=self.junction_threshold_hm)
lines_adjusted, indices_adj, supports, hat_points, counts = self.wireframe_matcher(juncs_pred, lines_pred_batch[i], hat_points_batch[i])
jscales = torch.tensor(
[
annotations['width']/md_pred.size(3),
annotations['height']/md_pred.size(2)
],
device=images.device
)
junctions = juncs_pred * jscales
supports = [_*self.stride for _ in supports]
num_junctions = junctions.shape[0]
graph_pred[i, indices_adj[:,0], indices_adj[:,1]] += counts.float()
graph_pred[i, indices_adj[:,1], indices_adj[:,0]] += counts.float()
graph_i = graph_pred[i,:num_junctions,:num_junctions]
edges = graph_i.triu().nonzero()
lines = junctions[edges].reshape(-1,4)
scores = graph_pred[i, edges[:,0], edges[:,1]]
output_list.append(
{
'lines_pred': lines,
'lines_score': scores,
'juncs_pred': junctions,
'lines_support': supports,
'juncs_score': juncs_score,
'graph': graph_i,
'width': annotations['width'],
'height': annotations['height'],
}
)
return output_list, {}
|