File size: 4,952 Bytes
4c954ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
HPatches sequences dataset, to perform homography estimation and
evaluate basic line detection metrics.
"""
import os
import numpy as np
import torch
import cv2
from pathlib import Path
from torch.utils.data import Dataset, DataLoader

from ..config.project_config import Config as cfg



class HPatches(torch.utils.data.Dataset):
    def __init__(self, mode='test', config=None):
        assert mode in ['test', 'export']

        self.conf = config
        self.root_dir = Path(cfg.hpatches_dataroot)
        folder_paths = [x for x in self.root_dir.iterdir() if x.is_dir()]
        self.data = []
        for path in folder_paths:
            if config['alteration'] == 'i' and path.stem[0] != 'i':
                continue
            if config['alteration'] == 'v' and path.stem[0] != 'v':
                continue
            if mode == 'test':
                for i in range(2, 7):
                    ref_path = Path(path, "1.ppm")
                    target_path = Path(path, str(i) + '.ppm')
                    self.data += [{
                        "ref_name": str(ref_path.parent.stem + "_" + ref_path.stem),
                        "ref_img_path": str(ref_path),
                        "target_name": str(target_path.parent.stem + "_" + target_path.stem),
                        "target_img_path": str(target_path),
                        "H": np.loadtxt(str(Path(path, "H_1_" + str(i)))),
                    }]
            else:
                for i in range(1, 7):
                    ref_path = Path(path, str(i) + '.ppm')
                    self.data += [{
                        "ref_name": str(ref_path.parent.stem + "_" + ref_path.stem),
                        "ref_img_path": str(ref_path)}]
        
    def get_dataset(self):
        return self

    def __getitem__(self, idx):
        img0_path = self.data[idx]['ref_img_path']
        img0 = cv2.imread(img0_path, 0)
        img_size = img0.shape

        if max(img_size) > self.conf['max_side']:
            s = self.conf['max_side'] / max(img_size)
            h_s = int(img_size[0] * s)
            w_s = int(img_size[1] * s)
            img0 = cv2.resize(img0, (w_s, h_s), interpolation=cv2.INTER_AREA)

        # Normalize the image in [0, 1]
        img0 = img0.astype(float) / 255.
        img0 = torch.tensor(img0[None], dtype=torch.float32)
        outputs = {'image': img0, 'image_path': img0_path,
                   'name': self.data[idx]['ref_name']}

        if 'target_name' in self.data[idx]:
            img1_path = self.data[idx]['target_img_path']
            img1 = cv2.imread(img1_path, 0)
            H = self.data[idx]['H']

            if max(img_size) > self.conf['max_side']:
                img1 = cv2.resize(img1, (w_s, h_s),
                                  interpolation=cv2.INTER_AREA)
                H = self.adapt_homography_to_preprocessing(
                    H, img_size, img_size, (h_s, w_s))

            # Normalize the image in [0, 1]
            img1 = img1.astype(float) / 255.
            img1 = torch.tensor(img1[None], dtype=torch.float)
            H = torch.tensor(H, dtype=torch.float)

            outputs['warped_image'] = img1
            outputs['warped_image_path'] = img1_path
            outputs['warped_name'] = self.data[idx]['target_name']
            outputs['H'] = H


        # root='/home/kezeran/code/hawpv4-dev/data-ssl/0images'
        # try:
        #     cv2.imwrite(f'{root}/img_{idx}.png', cv2.imread(img0_path))
        #     cv2.imwrite(f'{root}/img_{idx}_w.png', cv2.imread(img1_path))
        # except:
        #     pass

        return outputs

    def __len__(self):
        return len(self.data)

    def adapt_homography_to_preprocessing(self, H, img_shape1, img_shape2,
                                          target_size):
        source_size1 = np.array(img_shape1, dtype=float)
        source_size2 = np.array(img_shape2, dtype=float)
        target_size = np.array(target_size)

        # Get the scaling factor in resize
        scale1 = np.amax(target_size / source_size1)
        scaling1 = np.diag([1. / scale1, 1. / scale1, 1.]).astype(float)
        scale2 = np.amax(target_size / source_size2)
        scaling2 = np.diag([scale2, scale2, 1.]).astype(float)

        # Get the translation params in crop
        pad_y1 = (source_size1[0] * scale1 - target_size[0]) / 2.
        pad_x1 = (source_size1[1] * scale1 - target_size[1]) / 2.
        translation1 = np.array([[1., 0., pad_x1],
                                 [0., 1., pad_y1],
                                 [0., 0., 1.]], dtype=float)
        pad_y2 = (source_size2[0] * scale2 - target_size[0]) / 2.
        pad_x2 = (source_size2[1] * scale2 - target_size[1]) / 2.
        translation2 = np.array([[1., 0., -pad_x2],
                                 [0., 1., -pad_y2],
                                 [0., 0., 1.]], dtype=float)

        return translation2 @ scaling2 @ H @ scaling1 @ translation1