Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,231 Bytes
4c954ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
from torch.utils.data import Dataset
import os
import math
from tqdm import tqdm
from skimage.io import imread
from skimage import color
import PIL
import numpy as np
import h5py
import cv2
import pickle
from .synthetic_util import get_line_heatmap
from torchvision import transforms
import torch
import torch.utils.data.dataloader as torch_loader
# Augmentation libs
from ..config.project_config import Config as cfg
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
# Some visualization tools
from ..misc.visualize_util import plot_junctions, plot_line_segments
# Some data parsing tools
from ..misc.train_utils import parse_h5_data
# Inherit from private dataset
# from dataset.private_dataset import PrivateDataset
# Implements the customized collate_fn for yorkurban dataset
def yorkurban_collate_fn(batch):
batch_keys = ["image", "junction_map", "valid_mask", "heatmap",
"heatmap_pos", "heatmap_neg", "homography"]
list_keys = ["junctions", "line_map", "line_map_pos", "line_map_neg", "file_key",
"aux_junctions", "aux_line_map"]
outputs = {}
for data_key in batch[0].keys():
batch_match = sum([_ in data_key for _ in batch_keys])
list_match = sum([_ in data_key for _ in list_keys])
# print(batch_match, list_match)
if batch_match > 0 and list_match == 0:
outputs[data_key] = torch_loader.default_collate([b[data_key] for b in batch])
elif batch_match == 0 and list_match > 0:
outputs[data_key] = [b[data_key] for b in batch]
elif batch_match == 0 and list_match == 0:
continue
else:
raise ValueError("[Error] A key matches batch keys and list keys simultaneously.")
return outputs
# The processed wireframe.
class YorkUrbanDataset(Dataset):
# Initialize the dataset
def __init__(self, mode="test", config=None):
super(YorkUrbanDataset, self).__init__()
# Check mode => "train", "val", "test
if not mode in ["test"]:
raise ValueError("[Error] Unknown mode for york urban dataset. Only 'test' mode is available.")
self.mode = mode
self.config = config
# Get cache setting
self.dataset_name = self.get_dataset_name()
self.cache_name = self.get_cache_name()
self.cache_path = cfg.yorkurban_cache_path
# Get the filename dataset
print("[Info] Initializing york urban dataset...")
self.filename_dataset, self.datapoints = self.get_filename_dataset()
# Get dataset length
self.dataset_length = len(self.datapoints)
# Get repeatability evaluation set
if self.mode == "test" and self.config.get("evaluation", None) is not None:
# Get the cache name
tmp = self.cache_name.split(self.mode)
self.rep_i_cache_name = tmp[0] + self.mode + "_rep_i" + tmp[1]
self.rep_v_cache_name = tmp[0] + self.mode + "_rep_v" + tmp[1]
# Get the repeatability config
self.rep_config = self.config["evaluation"]["repeatability"]
self.rep_eval_dataset = self.construct_rep_eval_dataset()
self.rep_eval_datapoints = self.get_rep_eval_datapoints()
# Print some info
print("[Info] Successfully initialized dataset")
print("\t Name: yorkurban")
print("\t Mode: %s" %(self.mode))
print("\t Gt: %s" %(self.config.get("gt_source_%s"%(self.mode), "official")))
print("\t Counts: %d" %(self.dataset_length))
print("----------------------------------------")
def get_filename_dataset(self):
# Get the path to the dataset
if self.mode == "train":
raise NotImplementedError
elif self.mode == "test":
dataset_path = os.path.join(cfg.yorkurban_dataroot)
# Get paths to all image files
folder_lst = sorted([os.path.join(dataset_path, _) for _ in os.listdir(dataset_path) \
if os.path.isdir(os.path.join(dataset_path, _))])
folder_lst = folder_lst[:-1]
#folder_lst = [f for f in folder_lst if f.startswith('P')]
image_paths = []
for folder in folder_lst:
image_path = [os.path.join(folder, _) for _ in os.listdir(folder) \
if os.path.splitext(_)[-1] == ".jpg" or os.path.splitext(_)[-1] == ".png"]
image_paths += image_path
# Verify all the images and labels exist
for idx in range(len(image_paths)):
image_path = image_paths[idx]
if not os.path.exists(image_path):
raise ValueError("[Error] The image does not exist. %s"%(image_path))
# Construct the filename dataset
num_pad = int(math.ceil(math.log10(len(image_paths))) + 1)
filename_dataset = {}
for idx in range(len(image_paths)):
# Get the file key
key = self.get_padded_filename(num_pad, idx)
filename_dataset[key] = {
"image": image_paths[idx]
}
# Get the datapoints
datapoints = list(sorted(filename_dataset.keys()))
return filename_dataset, datapoints
# Get the padded filename using adaptive padding
@staticmethod
def get_padded_filename(num_pad, idx):
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
# Get dataset name from dataset config / default config
def get_dataset_name(self):
if self.config["dataset_name"] is None:
dataset_name = "yorkurban_dataset" + f"_{self.mode}"
else:
dataset_name = self.config["dataset_name"] + f"_{self.mode}"
return dataset_name
# Get cache name from dataset config / default config
def get_cache_name(self):
if self.config["dataset_name"] is None:
dataset_name = "yorkurban_dataset" + f"_{self.mode}"
else:
dataset_name = self.config["dataset_name"] + f"_{self.mode}"
# Compose cache name
cache_name = dataset_name + "_cache.pkl"
return cache_name
###########################################
## Repeatability evaluation related APIs ##
###########################################
# Construct repeatability evaluation dataset (from scratch or from cache)
def construct_rep_eval_dataset(self):
rep_eval_dataset = {}
# Check if viewpoint and illumination cache exists
if self.rep_config["photometric"]["enable"]:
if self._check_rep_eval_dataset_cache(split="i"):
print("\t Found repeatability illumination cache %s at %s"%(self.rep_i_cache_name, self.cache_path))
print("\t Load repeatability illumination cache...")
rep_i_keymap, rep_i_dataset_name = self.get_rep_eval_dataset_from_cache(split="i")
else:
print("\t Can't find repeatability illumination cache ...")
print("\t Create repeatability illumination dataset from scratch...")
rep_i_keymap, rep_i_dataset_name = self.get_rep_eval_dataset(split="i")
print("\t Create filename dataset cache...")
self.create_rep_eval_dataset_cache("i", rep_i_keymap, rep_i_dataset_name)
else:
rep_i_keymap = None
rep_i_dataset_name = None
rep_eval_dataset["illumination"] = {
"keymap": rep_i_keymap,
"dataset_name": rep_i_dataset_name
}
if self.rep_config["homographic"]["enable"]:
if self._check_rep_eval_dataset_cache(split="v"):
print("\t Found repeatability viewpoint cache %s at %s"%(self.rep_v_cache_name, self.cache_path))
print("\t Load repeatability viewpoint cache...")
rep_v_keymap, rep_v_dataset_name = self.get_rep_eval_dataset_from_cache(split="v")
else:
print("\t Can't find repeatability viewpoint cache ...")
print("\t Create repeatability viewpoint dataset from scratch...")
rep_v_keymap, rep_v_dataset_name = self.get_rep_eval_dataset(split="v")
print("\t Create filename dataset cache...")
self.create_rep_eval_dataset_cache("v", rep_v_keymap, rep_v_dataset_name)
else:
rep_v_keymap = None
rep_v_dataset_name = None
rep_eval_dataset["viewpoint"] = {
"keymap": rep_v_keymap,
"dataset_name": rep_v_dataset_name
}
return rep_eval_dataset
# Create filename dataset cache for faster initialization
def create_rep_eval_dataset_cache(self, split, keymap, dataset_name):
# Check cache path exists
if not os.path.exists(self.cache_path):
os.makedirs(self.cache_path)
if split == "i":
cache_file_path = os.path.join(self.cache_path, self.rep_i_cache_name)
elif split == "v":
cache_file_path = os.path.join(self.cache_path, self.rep_v_cache_name)
else:
raise ValueError("[Error] Unknown split for repeatability evaluation.")
data = {
"keymap": keymap,
"dataset_name": dataset_name
}
with open(cache_file_path, "wb") as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
# Get filename dataset from cache
def get_rep_eval_dataset_from_cache(self, split):
# Load from pkl cache
if split == "i":
cache_file_path = os.path.join(self.cache_path, self.rep_i_cache_name)
elif split == "v":
cache_file_path = os.path.join(self.cache_path, self.rep_v_cache_name)
else:
raise ValueError("[Error] Unknown split for repeatability evaluation.")
with open(cache_file_path, "rb") as f:
data = pickle.load(f)
return data["keymap"], data["dataset_name"]
# Initialize the repeatability evaluation dataset from scratch
def get_rep_eval_dataset(self, split):
image_shape = self.config["preprocessing"]["resize"]
# Initialize the illumination set
if split == "i":
# Set the random seed before continuing
seed = self.rep_config["seed"]
np.random.seed(seed)
torch.manual_seed(seed)
raise NotImplementedError
# Initialize the viewpoint set
elif split == "v":
# Set the random seed before continuing
seed = self.rep_config["seed"]
np.random.seed(seed)
torch.manual_seed(seed)
v_keymap = {}
# Get the name for the output h5 dataset
v_dataset_name = self.rep_v_cache_name.split(".pkl")[0] + ".h5"
v_dataset_path = os.path.join(self.cache_path, v_dataset_name)
with h5py.File(v_dataset_path, "w") as f:
# Iterate through all the file_key in test set
for idx, key in enumerate(tqdm(list(self.filename_dataset.keys()), ascii=True)):
# Sample N random homography
file_key_lst = []
for i in range(self.rep_config["homographic"]["num_samples"]):
file_key = key + "_" + str(i)
# Sample a random homography
homo_mat, _ = homoaug.sample_homography(image_shape,
**self.rep_config["homographic"]["params"])
file_key_lst.append(file_key)
f.create_dataset(file_key, data=homo_mat, compression="gzip")
v_keymap[key] = file_key_lst
return v_keymap, v_dataset_name
else:
raise ValueError("[Error] Unknow split for repeatability evaluation.")
# Convert ref image and warped images to list of evaluation pairs
def get_rep_eval_datapoints(self):
datapoints = {
"illumination": [],
"viewpoint": []
}
# Iterate through all the ref image
if self.rep_eval_dataset["illumination"]["keymap"] is not None:
for ref_key in sorted(self.rep_eval_dataset["illumination"]["keymap"].keys()):
pair_lst = [[ref_key, _] for _ in self.rep_eval_dataset["illumination"]["keymap"][ref_key]]
datapoints["illumination"] += pair_lst
if self.rep_eval_dataset["viewpoint"]["keymap"] is not None:
for ref_key in sorted(self.rep_eval_dataset["viewpoint"]["keymap"].keys()):
pair_lst = [[ref_key, _] for _ in self.rep_eval_dataset["viewpoint"]["keymap"][ref_key]]
datapoints["viewpoint"] += pair_lst
return datapoints
# Check if the repeatability cache dataset exists
def _check_rep_eval_dataset_cache(self, split):
if split == "i":
cache_file_path = os.path.join(self.cache_path, self.rep_i_cache_name)
else:
cache_file_path = os.path.join(self.cache_path, self.rep_v_cache_name)
return os.path.exists(cache_file_path)
###########################################
## Repeatability evaluation related APIs ##
###########################################
# Get the corresponding data according to the "index in rep_eval_datapoints".
def get_rep_eval_data(self, split, idx):
assert split in ["viewpoint", "illumination"]
datapoint = self.rep_eval_datapoints[split][idx]
# Get reference image
ref_key = datapoint[0]
# Get the data paths
data_path = self.filename_dataset[ref_key]
# Read in the image and npz labels (but haven't applied any transform)
image = imread(data_path["image"])
# Resize the image before photometric and homographical augmentations
image_size = image.shape[:2]
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) *255.).astype(np.uint8)
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Get target image
if split == "viewpoint":
target_key = datapoint[1]
dataset_path = os.path.join(self.cache_path, self.rep_eval_dataset[split]["dataset_name"])
with h5py.File(dataset_path, "r") as f:
homo_mat = np.array(f[target_key])
# Warp the image
target_size = (image.shape[1], image.shape[0])
target_image = cv2.warpPerspective(image, homo_mat, target_size,
flags=cv2.INTER_LINEAR)
else:
raise NotImplementedError
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
return {
"ref_image": to_tensor(image),
"ref_key": ref_key,
"target_image": to_tensor(target_image),
"target_key": target_key,
"homo_mat": homo_mat
}
############################################
## Pytorch and preprocessing related APIs ##
############################################
# Get the length of the dataset
def __len__(self):
return self.dataset_length
# Get data from the information from filename dataset
@staticmethod
def get_data_from_path(data_path):
output = {}
# Get image data
image_path = data_path["image"]
image = imread(image_path)
output["image"] = image
return output
# The test preprocessing
def test_preprocessing(self, data, numpy=False):
# Fetch the corresponding entries
image = data["image"]
image_size = image.shape[:2]
# Resize the image before photometric and homographical augmentations
if not(list(image_size) == self.config["preprocessing"]["resize"]):
# Resize the image and the point location.
size_old = list(image.shape)[:2] # Only H and W dimensions
image = cv2.resize(image, tuple(self.config['preprocessing']['resize'][::-1]),
interpolation=cv2.INTER_LINEAR)
image = np.array(image, dtype=np.uint8)
# Optionally convert the image to grayscale
if self.config["gray_scale"]:
image = (color.rgb2gray(image) *255.).astype(np.uint8)
# Still need to normalize image
image_transform = photoaug.normalize_image()
image = image_transform(image)
# Update image size
image_size = image.shape[:2]
valid_mask = np.ones(image_size)
# Convert to tensor and return the results
to_tensor = transforms.ToTensor()
if not numpy:
return {
"image": to_tensor(image),
"valid_mask": to_tensor(valid_mask).to(torch.int32)
}
else:
return {
"image": image,
"valid_mask": valid_mask.astype(np.int32)
}
# Define the getitem method
def __getitem__(self, idx):
"""Return data
file_key: str, keys used to retrieve certain data from the filename dataset.
image: torch.float, C*H*W range 0~1,
valid_mask: torch.int32, 1*H*W range 0 or 1
"""
# Get the corresponding datapoint and get contents from filename dataset
file_key = self.datapoints[idx]
data_path = self.filename_dataset[file_key]
# Read in the image and npz labels (but haven't applied any transform)
data = self.get_data_from_path(data_path)
# Perform transform and augmentation
if self.mode == "train" or self.config["add_augmentation_to_all_splits"]:
raise NotImplementedError
else:
data = self.test_preprocessing(data)
# Add file key to the output
data["file_key"] = file_key
return data
if __name__ == "__main__":
import sys
import yaml
import matplotlib
import matplotlib.pyplot as plt
plt.switch_backend("TkAgg")
from torch.utils.data import DataLoader
sys.path.append("../")
# Load configuration file
with open("./config/yorkurban_dataset_config.yaml", "r") as f:
config = yaml.safe_load(f)
config["add_augmentation_to_all_splits"] = False
# Initialize the dataset
test_dataset = YorkUrbanDataset(mode="test", config=config)
import ipdb; ipdb.set_trace() |