Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,268 Bytes
4c954ae 132b8b7 4c954ae c3190ee 5b2c05c 9c65782 6421c8b c3190ee 4c954ae 1d759ae 4c954ae 6715492 98dd04e 4c954ae f5bdb68 4c954ae 6715492 4c954ae 21db24d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import torch
import cv2
import os
import gradio as gr
import numpy as np
import random
from pathlib import Path
import json
import spaces
# Title for the Gradio interface
_TITLE = 'Gradio Demo of ScaleLSD for Structured Representation of Images'
MAX_SEED = 1000
os.system('mkdir -p models')
os.system('wget https://huggingface.co/cherubicxn/scalelsd/resolve/main/scalelsd-vitbase-v2-train-sa1b.pt -O models/scalelsd-vitbase-v2-train-sa1b.pt')
os.system('wget https://huggingface.co/cherubicxn/scalelsd/resolve/main/scalelsd-vitbase-v1-train-sa1b.pt -O models/scalelsd-vitbase-v1-train-sa1b.pt')
os.system('pip install -e .')
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
"""random seed"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def stop_run():
"""stop run"""
return (
gr.update(value="Run", variant="primary", visible=True),
gr.update(visible=False),
)
# @spaces.GPU()
@spaces.GPU
def process_image(
input_image,
model_name='scalelsd-vitbase-v2-train-sa1b.pt',
save_name='temp_output',
threshold=10,
junction_threshold_hm=0.008,
num_junctions_inference=512,
width=512,
height=512,
line_width=2,
juncs_size=4,
whitebg=0.0,
draw_junctions_only=False,
use_lsd=False,
use_nms=False,
edge_color='orange',
vertex_color='Cyan',
output_format='png',
seed=0,
randomize_seed=False
):
use_lsd = False
from scalelsd.ssl.models.detector import ScaleLSD
from scalelsd.base import show, WireframeGraph
from scalelsd.ssl.misc.train_utils import fix_seeds, load_scalelsd_model
"""core processing function for image inference"""
# set random seed
seed = int(randomize_seed_fn(seed, randomize_seed))
fix_seeds(seed)
# initialize model
ckpt = "models/" + model_name
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = load_scalelsd_model(ckpt, device)
# set model parameters
model.junction_threshold_hm = junction_threshold_hm
model.num_junctions_inference = num_junctions_inference
# transform input image
if isinstance(input_image, np.ndarray):
image = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
else:
image = cv2.imread(input_image, 0)
# resize
ori_shape = image.shape[:2]
image_resized = cv2.resize(image.copy(), (width, height))
image_tensor = torch.from_numpy(image_resized).float() / 255.0
image_tensor = image_tensor[None, None].to('cuda')
# meta data
meta = {
'width': ori_shape[1],
'height': ori_shape[0],
'filename': '',
'use_lsd': use_lsd,
'use_nms': use_nms,
}
# inference
with torch.no_grad():
outputs, _ = model(image_tensor, meta)
outputs = outputs[0]
# visual results
painter = show.painters.HAWPainter()
painter.confidence_threshold = threshold
painter.line_width = line_width
painter.marker_size = juncs_size
if whitebg > 0.0:
show.Canvas.white_overlay = whitebg
temp_folder = "temp_output"
os.makedirs(temp_folder, exist_ok=True)
fig_file = f"{temp_folder}/{save_name}.png"
with show.image_canvas(input_image, fig_file=fig_file) as ax:
if draw_junctions_only:
painter.draw_junctions(ax, outputs)
else:
painter.draw_wireframe(ax, outputs, edge_color=edge_color, vertex_color=vertex_color)
# read the result image
result_image = cv2.imread(fig_file)
if output_format != 'png':
fig_file = f"{temp_folder}/{save_name}.{output_format}"
with show.image_canvas(input_image, fig_file=fig_file) as ax:
if draw_junctions_only:
painter.draw_junctions(ax, outputs)
else:
painter.draw_wireframe(ax, outputs, edge_color=edge_color, vertex_color=vertex_color)
json_file = f"{temp_folder}/{save_name}.json"
indices = WireframeGraph.xyxy2indices(outputs['juncs_pred'],outputs['lines_pred'])
wireframe = WireframeGraph(outputs['juncs_pred'], outputs['juncs_score'], indices, outputs['lines_score'], outputs['width'], outputs['height'])
with open(json_file, 'w') as f:
json.dump(wireframe.jsonize(),f)
return result_image[:, :, ::-1], json_file, fig_file
def run_demo():
"""create the Gradio demo interface"""
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css, title=_TITLE) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f'# {_TITLE}')
gr.Markdown("Detect wireframe structures in images using ScaleLSD model")
pid = gr.State()
figs_root = "assets/figs"
example_images = [os.path.join(figs_root, iname) for iname in os.listdir(figs_root)]
with gr.Row():
input_image = gr.Image(example_images[0], label="Input Image", type="numpy")
output_image = gr.Image(label="Detection Result")
with gr.Row():
run_btn = gr.Button(value="Run", variant="primary")
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
with gr.Row():
json_file = gr.File(label="Download JSON Output", type="filepath")
image_file = gr.File(label="Download Image Output", type="filepath")
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
model_name = gr.Dropdown(
[ckpt for ckpt in os.listdir('models') if ckpt.endswith('.pt')],
value='scalelsd-vitbase-v2-train-sa1b.pt',
label="Model Selection"
)
with gr.Row():
save_name = gr.Textbox('temp_output', label="Save Name", placeholder="Name for saving output files")
with gr.Row():
with gr.Column():
threshold = gr.Number(10, label="Line Threshold")
junction_threshold_hm = gr.Number(0.008, label="Junction Threshold")
num_junctions_inference = gr.Number(1024, label="Max Number of Junctions")
width = gr.Number(512, label="Input Width")
height = gr.Number(512, label="Input Height")
with gr.Column():
draw_junctions_only = gr.Checkbox(False, label="Show Junctions Only")
use_lsd = gr.Checkbox(False, label="Use LSD-Rectifier")
use_nms = gr.Checkbox(True, label="Use NMS")
output_format = gr.Dropdown(
['png', 'jpg', 'pdf'],
value='png',
label="Output Format"
)
whitebg = gr.Slider(0.0, 1.0, value=0.7, label="White Background Opacity")
line_width = gr.Number(2, label="Line Width")
juncs_size = gr.Number(8, label="Junctions Size")
with gr.Row():
edge_color = gr.Dropdown(
['orange', 'midnightblue', 'red', 'green'],
value='orange',
label="Edge Color"
)
vertex_color = gr.Dropdown(
['Cyan', 'deeppink', 'yellow', 'purple'],
value='Cyan',
label="Vertex Color"
)
with gr.Row():
randomize_seed = gr.Checkbox(False, label="Randomize Seed")
seed = gr.Slider(0, MAX_SEED, value=42, step=1, label="Seed")
gr.Examples(
examples=example_images,
inputs=input_image,
)
# star event handlers
run_event = run_btn.click(
fn=process_image,
inputs=[
input_image,
model_name,
save_name,
threshold,
junction_threshold_hm,
num_junctions_inference,
width,
height,
line_width,
juncs_size,
whitebg,
draw_junctions_only,
use_lsd,
use_nms,
edge_color,
vertex_color,
output_format,
seed,
randomize_seed
],
outputs=[output_image, json_file, image_file],
)
# stop event handlers
stop_btn.click(
fn=stop_run,
outputs=[run_btn, stop_btn],
cancels=[run_event],
queue=False,
)
return demo
run_demo().launch()
|