Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,517 Bytes
4c954ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import argparse
import os
from os.path import join
import sys
import numpy as np
import cv2
import torch
from matplotlib import pyplot as plt
from tqdm import tqdm
import gradio as gr
import random
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
from scalelsd.ssl.models.detector import ScaleLSD
from scalelsd.base import show, WireframeGraph
from scalelsd.ssl.datasets.transforms.homographic_transforms import sample_homography
from scalelsd.ssl.misc.train_utils import fix_seeds
from line_matching.two_view_pipeline import TwoViewPipeline
from kornia.geometry import warp_perspective,transform_points
class HADConfig:
num_iter = 1
valid_border_margin = 3
translation = True
rotation = True
scale = True
perspective = True
scaling_amplitude = 0.2
perspective_amplitude_x = 0.2
perspective_amplitude_y = 0.2
allow_artifacts = False
patch_ratio = 0.85
had_cfg = HADConfig()
# Evaluation config
default_conf = {
'name': 'two_view_pipeline',
'use_lines': True,
'extractor': {
'name': 'wireframe',
'sp_params': {
'force_num_keypoints': False,
'max_num_keypoints': 2048,
},
'wireframe_params': {
'merge_points': True,
'merge_line_endpoints': True,
# 'merge_line_endpoints': False,
},
'max_n_lines': 512,
},
'matcher': {
'name': 'gluestick',
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
'trainable': False,
},
'ground_truth': {
'from_pose_depth': False,
}
}
# Title for the Gradio interface
_TITLE = 'ScaleLSD-GlueStick Line Matching'
MAX_SEED = 1000
def sample_homographics(height, width):
def scale_homography(H, stride):
H_scaled = H.clone()
H_scaled[:, :, 2, :2] *= stride
H_scaled[:, :, :2, 2] /= stride
return H_scaled
homographic = sample_homography(
shape = (height, width),
perspective = had_cfg.perspective,
scaling = had_cfg.scale,
rotation = had_cfg.rotation,
translation = had_cfg.translation,
scaling_amplitude = had_cfg.scaling_amplitude,
perspective_amplitude_x = had_cfg.perspective_amplitude_x,
perspective_amplitude_y = had_cfg.perspective_amplitude_y,
patch_ratio = had_cfg.patch_ratio,
allow_artifacts = False
)[0]
homographic = torch.from_numpy(homographic[None]).float().cuda()
homographic_inv = torch.inverse(homographic)
H = {
'h.1': homographic,
'ih.1': homographic_inv,
}
return H
def trans_image_with_homograpy(image):
h, w = image.shape[:2]
H = sample_homographics(height=h, width=w)
image_warped = warp_perspective(torch.Tensor(image).permute(2,0,1)[None].cuda(), H['h.1'], (h,w))
image_warped_ = image_warped[0].permute(1,2,0).cpu().numpy().astype(np.uint8)
plt.imshow(image_warped_)
plt.show()
return image_warped_
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
"""random seed"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def stop_run():
"""stop run"""
return (
gr.update(value="Run", variant="primary", visible=True),
gr.update(visible=False),
)
def clear_image2():
return None # returning None will clear the image component
def process_image(
input_image1='assets/figs/sa_1119229.jpg',
input_image2=None,
model_name='scalelsd-vitbase-v1-train-sa1b.pt',
save_name='temp',
threshold=5,
junction_threshold_hm=0.008,
num_junctions_inference=4096,
width=512,
height=512,
line_width=2,
juncs_size=4,
whitebg=1.0,
draw_junctions_only=False,
use_lsd=False,
use_nms=False,
edge_color='midnightblue',
vertex_color='deeppink',
output_format='png',
seed=0,
randomize_seed=False
):
"""core processing function for image inference"""
# set random seed
seed = int(randomize_seed_fn(seed, randomize_seed))
fix_seeds(seed)
conf = {
'model_name': model_name,
'threshold': threshold,
'junction_threshold_hm': junction_threshold_hm,
'num_junctions_inference': num_junctions_inference,
'use_lsd': use_lsd,
'use_nms': use_nms,
'width': width,
'height': height,
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipeline_model = TwoViewPipeline(default_conf).to(device).eval()
pipeline_model.extractor.update_conf(conf)
saveto = f'temp_output/matching_results'
image1 = cv2.cvtColor(input_image1, cv2.COLOR_BGR2RGB)
cv2.imwrite(f'{saveto}/image.png', image1)
input_image1 = f'{saveto}/image.png'
if input_image2 is None:
image2 = trans_image_with_homograpy(image1)
else:
image2 = cv2.cvtColor(input_image2, cv2.COLOR_BGR2RGB)
cv2.imwrite(f'{saveto}/image2.png', image2)
input_image2 = f'{saveto}/image2.png'
gray0 = cv2.imread(input_image1, 0)
gray1 = cv2.imread(input_image2, 0)
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
x = {'image0': torch_gray0, 'image1': torch_gray1}
pred = pipeline_model(x)
pred = batch_to_np(pred)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0 = pred["matches0"]
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
line_matches = pred["line_matches0"]
valid_matches = m0 != -1
match_indices = m0[valid_matches]
matched_kps0 = kp0[valid_matches]
matched_kps1 = kp1[match_indices]
valid_matches = line_matches != -1
match_indices = line_matches[valid_matches]
matched_lines0 = line_seg0[valid_matches]
matched_lines1 = line_seg1[match_indices]
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
mat_file = f'{saveto}/{save_name}_mat.png'
plot_images([img0, img1], dpi=200, pad=2.0)
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
plt.gcf().canvas.manager.set_window_title('Detected Lines')
# plt.tight_layout()
plt.savefig(mat_file)
det_image = cv2.imread(mat_file)[:,:,::-1]
det_file = f'{saveto}/{save_name}_mat.png'
plot_images([img0, img1], dpi=200, pad=2.0)
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
plt.gcf().canvas.manager.set_window_title('Line Matches')
# plt.tight_layout()
plt.savefig(det_file)
mat_image = cv2.imread(det_file)[:,:,::-1]
show.Canvas.white_overlay = whitebg
painter = show.painters.HAWPainter()
fig_file = f'{saveto}/{save_name}_det1.png'
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
with show.image_canvas(input_image1, fig_file=fig_file) as ax:
painter.draw_wireframe(ax,outputs, edge_color=edge_color, vertex_color=vertex_color)
det1_image = cv2.imread(fig_file)[:,:,::-1]
fig_file = f'{saveto}/{save_name}_det2.png'
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
with show.image_canvas(input_image2, fig_file=fig_file) as ax:
painter.draw_wireframe(ax,outputs, edge_color=edge_color, vertex_color=vertex_color)
det2_image = cv2.imread(fig_file)[:,:,::-1]
return image2[:,:,::-1], mat_image, det_image, det1_image, det2_image, mat_file, det_file
def demo():
"""create the Gradio demo interface"""
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css, title=_TITLE) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f'# {_TITLE}')
gr.Markdown("Detect wireframe structures in images using ScaleLSD model")
pid = gr.State()
figs_root = "assets/mat_figs"
example_single = [os.path.join(figs_root, 'single', iname) for iname in os.listdir(figs_root+'/single')]
example_pairs = [[img, None] for img in example_single]
example_pairs += [
[os.path.join(figs_root, 'pairs', f'ref_{i}.png'),
os.path.join(figs_root, 'pairs', f'tgt_{i}.png')]
for i in [10, 72, 76, 95, 149, 151]
]
with gr.Row():
input_image1 = gr.Image(example_pairs[0][0], label="Input Image1", type="numpy")
input_image2 = gr.Image(label="Input Image2", type="numpy")
with gr.Row():
mat_images = gr.Image(label="Matching Results")
with gr.Row():
det_images = gr.Image(label="Detection Results")
with gr.Row():
det_image1 = gr.Image(label="Detection1")
det_image2 = gr.Image(label="Detection2")
with gr.Row():
run_btn = gr.Button(value="Run", variant="primary")
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
with gr.Row():
mat_file = gr.File(label="Download Matching Result", type="filepath")
det_file = gr.File(label="Download Detection Result", type="filepath")
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
model_name = gr.Dropdown(
[ckpt for ckpt in os.listdir('models') if ckpt.endswith('.pt')],
value='scalelsd-vitbase-v1-train-sa1b.pt',
label="Model Selection"
)
with gr.Row():
save_name = gr.Textbox('temp_output', label="Save Name", placeholder="Name for saving output files")
with gr.Row():
with gr.Column():
threshold = gr.Number(10, label="Line Threshold")
junction_threshold_hm = gr.Number(0.008, label="Junction Threshold")
num_junctions_inference = gr.Number(1024, label="Max Number of Junctions")
width = gr.Number(512, label="Input Width")
height = gr.Number(512, label="Input Height")
with gr.Column():
draw_junctions_only = gr.Checkbox(False, label="Show Junctions Only")
use_lsd = gr.Checkbox(False, label="Use LSD-Rectifier")
use_nms = gr.Checkbox(True, label="Use NMS")
output_format = gr.Dropdown(
['png', 'jpg', 'pdf'],
value='png',
label="Output Format"
)
whitebg = gr.Slider(0.0, 1.0, value=1.0, label="White Background Opacity")
line_width = gr.Number(2, label="Line Width")
juncs_size = gr.Number(8, label="Junctions Size")
with gr.Row():
edge_color = gr.Dropdown(
['orange', 'midnightblue', 'red', 'green'],
value='midnightblue',
label="Edge Color"
)
vertex_color = gr.Dropdown(
['Cyan', 'deeppink', 'yellow', 'purple'],
value='deeppink',
label="Vertex Color"
)
with gr.Row():
randomize_seed = gr.Checkbox(False, label="Randomize Seed")
seed = gr.Slider(0, MAX_SEED, value=42, step=1, label="Seed")
gr.Examples(
examples=example_pairs,
inputs=[input_image1, input_image2]
)
# star event handlers
run_event = run_btn.click(
fn=process_image,
inputs=[
input_image1,
input_image2,
model_name,
save_name,
threshold,
junction_threshold_hm,
num_junctions_inference,
width,
height,
line_width,
juncs_size,
whitebg,
draw_junctions_only,
use_lsd,
use_nms,
edge_color,
vertex_color,
output_format,
seed,
randomize_seed
],
outputs=[input_image2, mat_images, det_images, det_image1, det_image2, mat_file, det_file],
)
# stop event handlers
stop_btn.click(
fn=stop_run,
outputs=[run_btn, stop_btn],
cancels=[run_event],
queue=False,
)
# When image1 changes, image2 is cleared
input_image1.change(
fn=clear_image2,
outputs=input_image2
)
return demo
if __name__ == "__main__":
# 启动应用
demo = demo()
demo.launch()
|