File size: 6,088 Bytes
4c954ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import numpy as np
from torch.utils.data.dataloader import default_collate

from halt import _C

class HAFMencoder(object):
    def __init__(self, cfg):
        self.dis_th = cfg.ENCODER.DIS_TH
        self.ang_th = cfg.ENCODER.ANG_TH
        self.num_static_pos_lines = cfg.ENCODER.NUM_STATIC_POS_LINES
        self.num_static_neg_lines = cfg.ENCODER.NUM_STATIC_NEG_LINES
    def __call__(self,annotations):
        targets = []
        metas   = []
        for ann in annotations:
            t,m = self._process_per_image(ann)
            targets.append(t)
            metas.append(m)
        
        return default_collate(targets),metas

    def adjacent_matrix(self, n, edges, device):
        mat = torch.zeros(n+1,n+1,dtype=torch.bool,device=device)
        if edges.size(0)>0:
            mat[edges[:,0], edges[:,1]] = 1
            mat[edges[:,1], edges[:,0]] = 1
        return mat

    def _process_per_image(self,ann):
        junctions = ann['junctions']
        device = junctions.device
        height, width = ann['height'], ann['width']
        jmap = torch.zeros((height,width),device=device)
        joff = torch.zeros((2,height,width),device=device,dtype=torch.float32)
        # junctions[:,0] = junctions[:,0].clamp(min=0,max=width-1)
        # junctions[:,1] = junctions[:,1].clamp(min=0,max=height-1)
        xint,yint = junctions[:,0].long(), junctions[:,1].long()
        off_x = junctions[:,0] - xint.float()-0.5
        off_y = junctions[:,1] - yint.float()-0.5

        jmap[yint,xint] = 1
        joff[0,yint,xint] = off_x
        joff[1,yint,xint] = off_y

        edges_positive = ann['edges_positive']
        edges_negative = ann['edges_negative']

        pos_mat = self.adjacent_matrix(junctions.size(0),edges_positive,device)
        neg_mat = self.adjacent_matrix(junctions.size(0),edges_negative,device)        
        lines = torch.cat((junctions[edges_positive[:,0]], junctions[edges_positive[:,1]]),dim=-1)
        lines_neg = torch.cat((junctions[edges_negative[:2000,0]],junctions[edges_negative[:2000,1]]),dim=-1)
        lmap, _, _ = _C.encodels(lines,height,width,height,width,lines.size(0))

        center_points = (lines[:,:2] + lines[:,2:])/2.0
        cmap = torch.zeros((height,width),device=device)
        cxint, cyint = center_points[:,0].long(), center_points[:,1].long()
        cmap[cyint,cxint] = 1

        # yy,xx = torch.meshgrid(torch.arange(width,device=device),torch.arange(width,device=device))
        # gaussian = torch.exp(-((yy[:,:,None]-center_points[None,None,:,1])**2 + (xx[:,:,None]-center_points[None,None,:,0])**2)/(2*(2*2)))
        # cmap = gaussian.max(dim=-1)[0]

        lpos = np.random.permutation(lines.cpu().numpy())[:self.num_static_pos_lines]
        lneg = np.random.permutation(lines_neg.cpu().numpy())[:self.num_static_neg_lines]
        # lpos = lines[torch.randperm(lines.size(0),device=device)][:self.num_static_pos_lines]
        # lneg = lines_neg[torch.randperm(lines_neg.size(0),device=device)][:self.num_static_neg_lines]
        lpos = torch.from_numpy(lpos).to(device)
        lneg = torch.from_numpy(lneg).to(device)
        
        lpre = torch.cat((lpos,lneg),dim=0)
        _swap = (torch.rand(lpre.size(0))>0.5).to(device)
        lpre[_swap] = lpre[_swap][:,[2,3,0,1]]
        lpre_label = torch.cat(
            [
                torch.ones(lpos.size(0),device=device),
                torch.zeros(lneg.size(0),device=device)
             ])

        meta = {
            'junc': junctions,
            'Lpos':   pos_mat,
            'Lneg':   neg_mat,
            'lpre':      lpre,
            'lpre_label': lpre_label,
            'lines':     lines,
        }


        dismap = torch.sqrt(lmap[0]**2+lmap[1]**2)[None]
        def _normalize(inp):
            mag = torch.sqrt(inp[0]*inp[0]+inp[1]*inp[1])
            return inp/(mag+1e-6)
        md_map = _normalize(lmap[:2])
        st_map = _normalize(lmap[2:4])
        ed_map = _normalize(lmap[4:])
        st_map = lmap[2:4]
        ed_map = lmap[4:]

        md_ = md_map.reshape(2,-1).t()
        st_ = st_map.reshape(2,-1).t()
        ed_ = ed_map.reshape(2,-1).t()
        Rt = torch.cat(
                (torch.cat((md_[:,None,None,0],md_[:,None,None,1]),dim=2),
                 torch.cat((-md_[:,None,None,1], md_[:,None,None,0]),dim=2)),dim=1)
        R = torch.cat(
                (torch.cat((md_[:,None,None,0], -md_[:,None,None,1]),dim=2),
                 torch.cat((md_[:,None,None,1], md_[:,None,None,0]),dim=2)),dim=1)

        Rtst_ = torch.matmul(Rt, st_[:,:,None]).squeeze(-1).t()
        Rted_ = torch.matmul(Rt, ed_[:,:,None]).squeeze(-1).t()
        swap_mask = (Rtst_[1]<0)*(Rted_[1]>0)
        pos_ = Rtst_.clone()
        neg_ = Rted_.clone()
        temp = pos_[:,swap_mask]
        pos_[:,swap_mask] = neg_[:,swap_mask]
        neg_[:,swap_mask] = temp

        pos_[0] = pos_[0].clamp(min=1e-9)
        pos_[1] = pos_[1].clamp(min=1e-9)
        neg_[0] = neg_[0].clamp(min=1e-9)
        neg_[1] = neg_[1].clamp(max=-1e-9)
        
        mask = (dismap.view(-1)<=self.dis_th).float()

        pos_map = pos_.reshape(-1,height,width)
        neg_map = neg_.reshape(-1,height,width)

        md_angle  = torch.atan2(md_map[1], md_map[0])
        pos_angle = torch.atan2(pos_map[1],pos_map[0])
        neg_angle = torch.atan2(neg_map[1],neg_map[0])

        mask *= (pos_angle.reshape(-1)>self.ang_th*np.pi/2.0)
        mask *= (neg_angle.reshape(-1)<-self.ang_th*np.pi/2.0)

        pos_angle_n = pos_angle/(np.pi/2)
        neg_angle_n = -neg_angle/(np.pi/2)
        md_angle_n  = md_angle/(np.pi*2) + 0.5
        mask    = mask.reshape(height,width)


        hafm_ang = torch.cat((md_angle_n[None],pos_angle_n[None],neg_angle_n[None],),dim=0)
        hafm_dis   = dismap.clamp(max=self.dis_th)/self.dis_th
        mask = mask[None]
        target = {'jloc':jmap[None],
                'joff':joff,
                'cloc': cmap[None],
                'md': hafm_ang,
                'dis': hafm_dis,
                'mask': mask
               }
        return target, meta