ScaleLSD / scalelsd /ssl /datasets /images_dataset.py
Nan Xue
update
4c954ae
raw
history blame
16.9 kB
try:
from pcache_fileio import fileio
except:
pass
import os
import os.path as osp
import glob
import math
import copy
from skimage.io import imread
from skimage import color
import PIL
from PIL import Image
import numpy as np
import h5py
import cv2
import pickle
import torch
import torch.utils.data.dataloader as torch_loader
from torch.utils.data import Dataset
from torchvision import transforms
from pathlib import Path
import json
from ..config.project_config import Config as cfg
from .transforms import photometric_transforms as photoaug
from .transforms import homographic_transforms as homoaug
from .transforms.utils import random_scaling
from .synthetic_util import get_line_heatmap
from ..misc.train_utils import parse_h5_data
from ..misc.geometry_utils import warp_points, mask_points
from tqdm import tqdm
def images_collate_fn(batch):
""" Customized collate_fn for wireframe dataset. """
batch_keys = ["image", "junction_map", "valid_mask", "heatmap",
"heatmap_pos", "heatmap_neg", "homography",
"line_points", "line_indices"]
list_keys = ["junctions", "line_map", "line_map_pos",
"line_map_neg", "file_key","fname","image_origin","uuid"]
outputs = {}
for data_key in batch[0].keys():
batch_match = sum([_ == data_key for _ in batch_keys])
list_match = sum([_ == data_key for _ in list_keys])
# print(batch_match, list_match)
if batch_match > 0 and list_match == 0:
outputs[data_key] = torch_loader.default_collate(
[b[data_key] for b in batch])
elif batch_match == 0 and list_match > 0:
outputs[data_key] = [b[data_key] for b in batch]
elif batch_match == 0 and list_match == 0:
continue
else:
raise ValueError(
"[Error] A key matches batch keys and list keys simultaneously.")
return outputs
class ImageCollections(Dataset):
def __init__(self, mode, config, homoadp=False,homoadp_resume=False):
super(ImageCollections, self).__init__()
if config is None:
self.config = self.get_default_config()
else:
self.config = config
h5path = config.get('gt_source_train',None)
self.json_list = None
self.homoadp = homoadp
self.homoadp_resume = homoadp_resume
if self.config['img_reg_exp'] == 'all':
self.config['img_reg_exp'] = []
for i in range(998):
self.config['img_reg_exp'].append(f'sa_{i:06d}/images/*.jpg')
if h5path is not None and h5path.endswith('.h5'):
self.h5path = osp.join(cfg.EXPORT_ROOT,'export_datasets',h5path)
with h5py.File(self.h5path,'r') as f:
self.filenames = [k.decode('UTF-8') for k in f['filenames']]
self.filenames = [osp.join(cfg.EXPORT_ROOT,f) for f in self.filenames]
elif h5path is not None and h5path.endswith('.jsons'):
self.use_json = True
self.h5path = osp.join(cfg.EXPORT_ROOT,'export_datasets',h5path)
#json_list = glob.glob(self.h5path+'/*.json')
json_list = []
for exp in tqdm(self.config['img_reg_exp']):
_json_regexp = Path(exp).with_suffix('.json')
_jsons = glob.glob(osp.join(self.h5path,str(_json_regexp)))
json_list.extend(_jsons)
if cfg.DATASET_ROOT.startswith('pcache'):
if osp.isfile(Path(h5path).with_suffix('.pcache')) and (self.homoadp_resume or not self.homoadp):
with open(Path(h5path).with_suffix('.pcache'),'r') as _f:
filenames = _f.readlines()
filenames = [ x.rstrip('\n') for x in filenames ]
else:
self.folder_regexp = []
filenames = []
print('Loading from pcache......')
for exp in tqdm(self.config['img_reg_exp']):
_path = Path(osp.join(self.config['dataset_root'][0],exp))
_p = osp.join(cfg.DATASET_ROOT,str(_path.parent))
_e = _path.suffix
_list = [osp.basename(_) for _ in os.listdir(_p) if _.endswith(_e)]
_list = [osp.join(_p,_) for _ in _list]
filenames.extend(_list)
with open(Path(h5path).with_suffix('.pcache'),'w') as _f:
_f.writelines('\n'.join(filenames))
else:
self.folder_regexp = [osp.join(cfg.DATASET_ROOT,self.config['dataset_root'][0],exp) for exp in self.config['img_reg_exp']]
filenames = sum([glob.glob(exp) for exp in self.folder_regexp],[])
filenames = [Path(f) for f in filenames]
self.dataset_root = osp.join(cfg.DATASET_ROOT,self.config['dataset_root'][0])
filedict = {str(Path(osp.relpath(f,self.dataset_root)).with_suffix('')): f for f in filenames}
jsondict = {str(Path(osp.relpath(j,h5path)).with_suffix('')): j for j in json_list}
self.filenames = []
self.json_list = []
if self.homoadp:
for k in filedict.keys():
if k in jsondict and self.homoadp_resume:
continue
else:
self.filenames.append(str(filedict[k]))
self.h5path = None
self.use_json = False
print(f"Found {len(json_list)} json files from the folder")
print(f"Total images are reduced from {len(filenames)} to {len(self.filenames)}")
else:
for k in filedict.keys():
if k in jsondict:
self.filenames.append(str(filedict[k]))
self.json_list.append(str(jsondict[k]))
else:
self.folder_regexp = [osp.join(cfg.DATASET_ROOT,self.config['dataset_root'][0],exp) for exp in self.config['img_reg_exp']]
self.filenames = sum([glob.glob(exp) for exp in self.folder_regexp],[])
self.h5path = None
self.default_config = self.get_default_config()
self.dataset_name = self.config['alias']
self.size = self.config['preprocessing']['resize']
print("Found %d images in %s" % (len(self),self.config['dataset_root']))
self.num_pad = int(math.ceil(math.log10(len(self))))+1 if len(self)>0 else 0
def __len__(self):
return len(self.filenames)
def get_padded_filename(self, num_pad, idx):
file_len = len("%d" % (idx))
filename = "0" * (num_pad - file_len) + "%d" % (idx)
return filename
def train_preprocessing(self, data, numpy=False):
""" Train preprocessing for the dataset. """
image = data['image']
junctions = data.get('junctions',None)
image_size = image.shape[:2]
if not(list(image_size) == self.config['preprocessing']['resize']):
size_old = list(image.shape)[:2]
image = cv2.resize(image, tuple(self.config['preprocessing']['resize'][::-1]), interpolation=cv2.INTER_LINEAR)
scales = (image.shape[0] / size_old[0], image.shape[1] / size_old[1])
if junctions is not None:
junctions *= torch.tensor(scales).reshape(1, 2)
if self.config['augmentation']['photometric']['enable']:
photo_trans_list = self.get_photo_transform()
### Apply photometric transforms
np.random.shuffle(photo_trans_list)
image_transform = transforms.Compose(photo_trans_list + [photoaug.normalize_image()])
else:
image_transform = photoaug.normalize_image()
image = image_transform(image)
if self.config['augmentation']['homographic']['enable']:
homo_trans = self.get_homo_transform()
outputs = homo_trans(image, junctions, data['line_map'])
junctions = outputs["junctions"]
image = outputs["warped_image"]
line_map = outputs['line_map']
data['line_map'] = torch.tensor(line_map)
data['valid_mask'] = outputs['valid_mask']
data['image'] = torch.from_numpy(image)[None]
if junctions is not None:
data['junctions'] = torch.from_numpy(junctions).float()
return data
def get_homo_transform(self):
""" Get homographic transforms (according to the config). """
# Get homographic transforms for image
homo_config = self.config["augmentation"]["homographic"]["params"]
if not self.config["augmentation"]["homographic"]["enable"]:
raise ValueError(
"[Error] Homographic augmentation is not enabled.")
# Parse the homographic transforms
image_shape = self.config["preprocessing"]["resize"]
# Compute the min_label_len from config
try:
min_label_tmp = self.config["generation"]["min_label_len"]
except:
min_label_tmp = None
# float label len => fraction
if isinstance(min_label_tmp, float): # Skip if not provided
min_label_len = min_label_tmp * min(image_shape)
# int label len => length in pixel
elif isinstance(min_label_tmp, int):
scale_ratio = (self.config["preprocessing"]["resize"]
/ self.config["generation"]["image_size"][0])
min_label_len = (self.config["generation"]["min_label_len"]
* scale_ratio)
# if none => no restriction
else:
min_label_len = 0
# Initialize the transform
homographic_trans = homoaug.homography_transform(
image_shape, homo_config, 0, min_label_len)
return homographic_trans
def get_photo_transform(self):
""" Get list of photometric transforms (according to the config). """
# Get the photometric transform config
photo_config = self.config["augmentation"]["photometric"]
if not photo_config["enable"]:
raise ValueError(
"[Error] Photometric augmentation is not enabled.")
# Parse photometric transforms
trans_lst = self.parse_transforms(photo_config["primitives"],
photoaug.available_augmentations)
trans_config_lst = [photo_config["params"].get(p, {})
for p in trans_lst]
# List of photometric augmentation
photometric_trans_lst = [
getattr(photoaug, trans)(**conf) \
for (trans, conf) in zip(trans_lst, trans_config_lst)
]
return photometric_trans_lst
def parse_transforms(self, names, all_transforms):
""" Parse the transform. """
trans = all_transforms if (names == 'all') \
else (names if isinstance(names, list) else [names])
assert set(trans) <= set(all_transforms)
return trans
def check_files(self):
h5path = self.config.get('gt_source_train',None)
valid_filenames = []
for filename in self.filenames:
try:
image_origin = np.array(PIL.Image.open(filename))
valid_filenames.append(filename)
except IOError:
print(f"Unable to load image from path: {filename}")
new_pcache_path = Path(h5path).with_name(f"{Path(h5path).stem}_filtered.pcache")
with open(new_pcache_path, 'w') as _f:
for filename in valid_filenames:
_f.write(f"{filename}\n")
def check_health(self):
is_healthy = True
image_fail_list = []
json_fail_list = []
for idx in tqdm(range(len(self))):
#try:
# image_origin = np.array(PIL.Image.open(self.filenames[idx]))
#except:
# is_healthy = False
# print(f'The image {self.filenames[idx]} is broken.')
# image_fail_list.append(self.filenames[idx])
if self.h5path is not None and self.json_list is not None:
try:
with open(self.json_list[idx],'r') as f:
data = json.load(f)
except:
is_healthy = False
print(f'The image {self.filenames[idx]} is broken.')
json_fail_list.append(self.json_list[idx])
return {
'images': image_fail_list,
'jsons': json_fail_list,
'status': is_healthy
}
def __getitem__(self, idx):
fname = osp.basename(self.filenames[idx])
#image_origin = cv2.imread(self.filenames[idx])
try:
image_origin = np.array(PIL.Image.open(self.filenames[idx]))
except:
image_origin = np.array(PIL.Image.open('hawp/ssl/config/exports/sa1b/00030043_0.png')) # deal with the failed case
if self.config['gray_scale']:
image = cv2.cvtColor(image_origin, cv2.COLOR_BGR2GRAY)
else:
image = cv2.cvtColor(image_origin, cv2.COLOR_BGR2RGB)
# image = np.array(image,dtype=np.float32)/255.0
data = {
'fname': self.filenames[idx],
'image': image,
# 'image': torch.from_numpy(image)[None],
# 'valid_mask': torch.ones(self.size,dtype=torch.float32)[None],
'image_origin': image_origin,
}
data['uuid'] = osp.relpath(self.filenames[idx],self.dataset_root)
if self.h5path is not None and self.json_list is None:
with h5py.File(self.h5path,'r') as f:
gt_key = self.get_padded_filename(self.num_pad,idx)
exported_label = parse_h5_data(f[gt_key])
junctions = torch.tensor(exported_label['junctions']).float()
edges = torch.tensor(exported_label['edges']).long()
lines = junctions[edges]
junctions_valid = torch.zeros(len(junctions),dtype=torch.bool)
junctions_valid[edges.unique()] = 1
junctions_idx = -torch.ones(len(junctions),dtype=torch.long)
junctions_idx[junctions_valid] = torch.arange(junctions_valid.sum())
edges_remapped = junctions_idx[edges]
junctions = junctions[junctions_valid]
lines_remapped = junctions[edges_remapped]
line_map = torch.zeros(junctions.shape[0],junctions.shape[0],dtype=torch.float32)
if len(edges_remapped) > 0:
line_map[edges_remapped[:,0],edges_remapped[:,1]] = 1
line_map[edges_remapped[:,1],edges_remapped[:,0]] = 1
data['line_map'] = line_map
data['junctions'] = junctions[:,[1,0]]
elif self.h5path is not None and self.json_list is not None:
with open(self.json_list[idx],'r') as f:
json_data = json.load(f)
junctions = torch.tensor(json_data['junctions']).float()
if junctions.shape[0] == 0:
junctions = torch.zeros((1,2)).float()
edges = torch.tensor(json_data['edges']).long()
lines = junctions[edges]
junctions_valid = torch.zeros(len(junctions),dtype=torch.bool)
junctions_valid[edges.unique()] = 1
junctions_idx = -torch.ones(len(junctions),dtype=torch.long)
junctions_idx[junctions_valid] = torch.arange(junctions_valid.sum())
edges_remapped = junctions_idx[edges]
junctions = junctions[junctions_valid]
lines_remapped = junctions[edges_remapped]
line_map = torch.zeros(junctions.shape[0],junctions.shape[0],dtype=torch.float32)
if len(edges_remapped) > 0:
line_map[edges_remapped[:,0],edges_remapped[:,1]] = 1
line_map[edges_remapped[:,1],edges_remapped[:,0]] = 1
data['line_map'] = line_map
data['junctions'] = junctions[:,[1,0]]
else:
data['valid_mask'] = torch.ones(self.size,dtype=torch.float32)[None]
return self.train_preprocessing(data)
return data # TODO: remove this line
def get_default_config(self):
return {
"dataset_name": "images",
"add_augmentation_to_all_splits": False,
"preprocessing": {
"resize": [512,512],
"blur_size": 11,
},
"augmentation": {
"photometric": {
"enable": False
},
"homographic": {
"enable": False
}
}
}