Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from torch.utils.data.dataloader import default_collate | |
from scalelsd.base.csrc import _C | |
class HAFMencoder(object): | |
def __init__(self, dis_th = 10, ang_th = 0): | |
self.dis_th = dis_th | |
self.ang_th = ang_th | |
def __call__(self,annotations): | |
targets = [] | |
metas = [] | |
batch_size = annotations['batch_size'] | |
stride = annotations['stride'] | |
for batch_id in range(batch_size): | |
junctions = annotations['junctions'][batch_id].clone()[:,[1,0]]/float(stride) | |
width = annotations['width']//stride | |
height = annotations['height']//stride | |
edge_indices = annotations['line_map'][batch_id].triu().nonzero() | |
t, m = self.encoding_single_image(junctions,edge_indices,height,width) | |
targets.append(t) | |
metas.append(m) | |
return default_collate(targets),metas | |
def adjacent_matrix(self, n, edges, device): | |
mat = torch.zeros(n+1,n+1,dtype=torch.bool,device=device) | |
if edges.size(0)>0: | |
mat[edges[:,0], edges[:,1]] += True | |
mat[edges[:,1], edges[:,0]] += True | |
return mat | |
def lines2hafm(self, lines, height, width): | |
device = lines.device | |
if lines.shape[0] == 0: | |
hafm_ang = torch.zeros((3,height,width),device=device) | |
hafm_dis = torch.zeros((1,height,width),device=device) | |
hafm_mask = torch.zeros((1,height,width),device=device) | |
return torch.zeros((3,height,width),device=device), torch.zeros((1,height,width),device=device), torch.zeros((1,height,width),device=device) | |
lmap, _, _ = _C.encodels(lines,height,width,height,width,lines.size(0)) | |
dismap = torch.sqrt(lmap[0]**2+lmap[1]**2)[None] | |
def _normalize(inp): | |
mag = torch.sqrt(inp[0]*inp[0]+inp[1]*inp[1]) | |
return inp/(mag+1e-6) | |
md_map = _normalize(lmap[:2]) | |
st_map = _normalize(lmap[2:4]) | |
ed_map = _normalize(lmap[4:]) | |
st_map = lmap[2:4] | |
ed_map = lmap[4:] | |
md_ = md_map.reshape(2,-1).t() | |
st_ = st_map.reshape(2,-1).t() | |
ed_ = ed_map.reshape(2,-1).t() | |
Rt = torch.cat( | |
(torch.cat((md_[:,None,None,0],md_[:,None,None,1]),dim=2), | |
torch.cat((-md_[:,None,None,1], md_[:,None,None,0]),dim=2)),dim=1) | |
R = torch.cat( | |
(torch.cat((md_[:,None,None,0], -md_[:,None,None,1]),dim=2), | |
torch.cat((md_[:,None,None,1], md_[:,None,None,0]),dim=2)),dim=1) | |
#Rtst_ = torch.matmul(Rt, st_[:,:,None]).squeeze(-1).t() | |
#Rted_ = torch.matmul(Rt, ed_[:,:,None]).squeeze(-1).t() | |
Rtst_ = torch.bmm(Rt, st_[:,:,None]).squeeze(-1).t() | |
Rted_ = torch.bmm(Rt, ed_[:,:,None]).squeeze(-1).t() | |
swap_mask = (Rtst_[1]<0)*(Rted_[1]>0) | |
pos_ = Rtst_.clone() | |
neg_ = Rted_.clone() | |
temp = pos_[:,swap_mask] | |
pos_[:,swap_mask] = neg_[:,swap_mask] | |
neg_[:,swap_mask] = temp | |
pos_[0] = pos_[0].clamp(min=1e-9) | |
pos_[1] = pos_[1].clamp(min=1e-9) | |
neg_[0] = neg_[0].clamp(min=1e-9) | |
neg_[1] = neg_[1].clamp(max=-1e-9) | |
mask = (dismap.view(-1)<=self.dis_th).float() | |
pos_map = pos_.reshape(-1,height,width) | |
neg_map = neg_.reshape(-1,height,width) | |
md_angle = torch.atan2(md_map[1], md_map[0]) | |
pos_angle = torch.atan2(pos_map[1],pos_map[0]) | |
neg_angle = torch.atan2(neg_map[1],neg_map[0]) | |
mask *= (pos_angle.reshape(-1)>self.ang_th*np.pi/2.0) | |
mask *= (neg_angle.reshape(-1)<-self.ang_th*np.pi/2.0) | |
pos_angle_n = pos_angle/(np.pi/2) | |
neg_angle_n = -neg_angle/(np.pi/2) | |
md_angle_n = md_angle/(np.pi*2) + 0.5 | |
mask = mask.reshape(height,width) | |
hafm_ang = torch.cat((md_angle_n[None],pos_angle_n[None],neg_angle_n[None],),dim=0) | |
hafm_dis = dismap.clamp(max=self.dis_th)/self.dis_th | |
mask = mask[None] | |
return hafm_ang, hafm_dis, mask | |
def encoding_single_image(self, junctions, edge_indices, height, width): | |
device = junctions.device | |
# jmap = torch.zeros((height,width),device=device) | |
# joff = torch.zeros((2,height,width),device=device,dtype=torch.float32) | |
jmap = np.zeros((height,width),dtype=np.float32) | |
joff = np.zeros((2,height,width),dtype=np.float32) | |
dx, dy = np.meshgrid(np.arange(width), np.arange(height)) | |
# gaussian = np.exp(-(dx**2+dy**2)/2.0/2.0**2) | |
if junctions.shape[0] > 0: | |
junctions_np = junctions.cpu().numpy() | |
xint, yint = junctions_np[:,0].astype(np.int32), junctions_np[:,1].astype(np.int32) | |
off_x = junctions_np[:,0] - np.floor(junctions_np[:,0]) - 0.5 | |
off_y = junctions_np[:,1] - np.floor(junctions_np[:,1]) - 0.5 | |
jmap[yint,xint] = 1#= jmap[yint,xint] + 1 | |
joff[0,yint,xint] = off_x | |
joff[1,yint,xint] = off_y | |
lines = junctions[edge_indices].reshape(-1,4) | |
pos_mat = self.adjacent_matrix(junctions.size(0), edge_indices, device) | |
labels = torch.ones((lines.shape[0],),device=device) | |
else: | |
lines = torch.empty((0,4),device=device) | |
pos_mat = None | |
labels = None | |
# for _x,_y in junctions.cpu().numpy(): | |
# _map = np.exp(-((dx-_x)**2+(dy-_y)**2)/2.0/8.0**2) | |
# _map /= _map.max() | |
# jmap = np.maximum(jmap,_map) | |
# import matplotlib.pyplot as plt | |
# import pdb; pdb.set_trace() | |
jmap = torch.from_numpy(jmap).to(device) | |
joff = torch.from_numpy(joff).to(device) | |
hafm_ang, hafm_dis, hafm_mask = self.lines2hafm(lines,height,width) | |
target = { | |
'jloc': jmap[None], | |
'joff': joff, | |
'md': hafm_ang, | |
'dis': hafm_dis, | |
'mask': hafm_mask | |
} | |
meta = { | |
'junc': junctions, | |
'lines': lines, | |
'Lpos': pos_mat, | |
'lpre': lines, | |
'lpre_label': labels | |
} | |
return target, meta | |