Nan Xue
update
4c954ae
import argparse
import os
from os.path import join
import sys
import numpy as np
import cv2
import torch
from matplotlib import pyplot as plt
from tqdm import tqdm
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
from line_matching.two_view_pipeline import TwoViewPipeline
from scalelsd.base import show, WireframeGraph
from scalelsd.ssl.datasets.transforms.homographic_transforms import sample_homography
from kornia.geometry import warp_perspective,transform_points
class HADConfig:
num_iter = 1
valid_border_margin = 3
translation = True
rotation = True
scale = True
perspective = True
scaling_amplitude = 0.2
perspective_amplitude_x = 0.2
perspective_amplitude_y = 0.2
allow_artifacts = False
patch_ratio = 0.85
had_cfg = HADConfig()
def sample_homographics(height, width):
def scale_homography(H, stride):
H_scaled = H.clone()
H_scaled[:, :, 2, :2] *= stride
H_scaled[:, :, :2, 2] /= stride
return H_scaled
homographic = sample_homography(
shape = (height, width),
perspective = had_cfg.perspective,
scaling = had_cfg.scale,
rotation = had_cfg.rotation,
translation = had_cfg.translation,
scaling_amplitude = had_cfg.scaling_amplitude,
perspective_amplitude_x = had_cfg.perspective_amplitude_x,
perspective_amplitude_y = had_cfg.perspective_amplitude_y,
patch_ratio = had_cfg.patch_ratio,
allow_artifacts = False
)[0]
homographic = torch.from_numpy(homographic[None]).float().cuda()
homographic_inv = torch.inverse(homographic)
H = {
'h.1': homographic,
'ih.1': homographic_inv,
}
return H
def trans_image_with_homograpy(image):
h, w = image.shape[:2]
H = sample_homographics(height=h, width=w)
image_warped = warp_perspective(torch.Tensor(image).permute(2,0,1)[None].cuda(), H['h.1'], (h,w))
image_warped_ = image_warped[0].permute(1,2,0).cpu().numpy().astype(np.uint8)
plt.imshow(image_warped_)
plt.show()
return image_warped_
def main():
# Parse input parameters
parser = argparse.ArgumentParser(
prog='GlueStick Demo',
description='Demo app to show the point and line matches obtained by GlueStick')
parser.add_argument('-img1', default='assets/figs/sa_1119229.jpg')
parser.add_argument('-img2', default=None)
parser.add_argument('--max_pts', type=int, default=1000)
parser.add_argument('--max_lines', type=int, default=300)
parser.add_argument('--model', type=str, default='models/paper-sa1b-997pkgs-model.pt')
args = parser.parse_args()
# important
if args.img1 is None and args.img2 is None:
raise ValueError("Input at least one path of image1 or image2")
# Evaluation config
conf = {
'name': 'two_view_pipeline',
'use_lines': True,
'extractor': {
'name': 'wireframe',
'sp_params': {
'force_num_keypoints': False,
'max_num_keypoints': args.max_pts,
},
'wireframe_params': {
'merge_points': True,
'merge_line_endpoints': True,
# 'merge_line_endpoints': False,
},
'max_n_lines': args.max_lines,
},
'matcher': {
'name': 'gluestick',
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
'trainable': False,
},
'ground_truth': {
'from_pose_depth': False,
}
}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pipeline_model = TwoViewPipeline(conf).to(device).eval()
pipeline_model.extractor.update_conf(None)
saveto = f'temp_output/matching_results'
os.makedirs(saveto, exist_ok=True)
image1 = cv2.cvtColor(cv2.imread(args.img1), cv2.COLOR_BGR2RGB)
if args.img2 is None:
image2 = trans_image_with_homograpy(image1)
cv2.imwrite(f'{saveto}/warped_image.png', image2)
args.img2 = f'{saveto}/warped_image.png'
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
x = {'image0': torch_gray0, 'image1': torch_gray1}
pred = pipeline_model(x)
pred = batch_to_np(pred)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0 = pred["matches0"]
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
line_matches = pred["line_matches0"]
valid_matches = m0 != -1
match_indices = m0[valid_matches]
matched_kps0 = kp0[valid_matches]
matched_kps1 = kp1[match_indices]
valid_matches = line_matches != -1
match_indices = line_matches[valid_matches]
matched_lines0 = line_seg0[valid_matches]
matched_lines1 = line_seg1[match_indices]
# Plot the matches
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
plot_images([img0, img1], dpi=200, pad=2.0)
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
plt.gcf().canvas.manager.set_window_title('Detected Lines')
# plt.tight_layout()
plt.savefig(f'{saveto}/det.png')
plot_images([img0, img1], dpi=200, pad=2.0)
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
plt.gcf().canvas.manager.set_window_title('Line Matches')
# plt.tight_layout()
plt.savefig(f'{saveto}/mat.png')
whitebg = 1
show.Canvas.white_overlay = whitebg
painter = show.painters.HAWPainter()
fig_file = f'{saveto}/det1.png'
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
with show.image_canvas(args.img1, fig_file=fig_file) as ax:
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
fig_file = f'{saveto}/det2.png'
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
with show.image_canvas(args.img2, fig_file=fig_file) as ax:
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
if __name__ == '__main__':
main()