Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
from os.path import join | |
import sys | |
import cv2 | |
import torch | |
from matplotlib import pyplot as plt | |
from tqdm import tqdm | |
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT | |
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches | |
# from gluestick.models.two_view_pipeline import TwoViewPipeline | |
from line_matching.two_view_pipeline import TwoViewPipeline | |
from scalelsd.base import show, WireframeGraph | |
def main(): | |
# Parse input parameters | |
parser = argparse.ArgumentParser( | |
prog='GlueStick Demo', | |
description='Demo app to show the point and line matches obtained by GlueStick') | |
parser.add_argument('-inum', default=None, type=int) | |
parser.add_argument('-imax', default=None, type=int) | |
parser.add_argument('-img1', default=join('resources' + os.path.sep + 'img1.jpg')) | |
parser.add_argument('-img2', default=join('resources' + os.path.sep + 'img2.jpg')) | |
parser.add_argument('--max_pts', type=int, default=1000) | |
parser.add_argument('--max_lines', type=int, default=300) | |
parser.add_argument('--model', default='scalelsd', type=str) | |
parser.add_argument('--test_root', type=str, default='data-ssl/0images-pre/') | |
args = parser.parse_args() | |
# Evaluation config | |
conf = { | |
'name': 'two_view_pipeline', | |
'use_lines': True, | |
'extractor': { | |
'name': 'wireframe', | |
'sp_params': { | |
'force_num_keypoints': False, | |
'max_num_keypoints': args.max_pts, | |
}, | |
'wireframe_params': { | |
'merge_points': True, | |
'merge_line_endpoints': True, | |
# 'merge_line_endpoints': False, | |
}, | |
'max_n_lines': args.max_lines, | |
}, | |
'matcher': { | |
'name': 'gluestick', | |
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'), | |
'trainable': False, | |
}, | |
'ground_truth': { | |
'from_pose_depth': False, | |
} | |
} | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
pipeline_model = TwoViewPipeline(conf).to(device).eval() | |
pipeline_model.extractor.update_conf(None) | |
md = args.model | |
root = args.test_root | |
if args.inum is not None: | |
ids = [args.inum] | |
elif args.imax is not None: | |
ids = range(args.inum, args.imax+1) | |
else: | |
l_imgs = int(len(os.listdir(root))/2) | |
ids = range(l_imgs) | |
for id in tqdm(ids): | |
saveto = f'temp_output/matching_results/{md}/{id}' | |
os.makedirs(saveto, exist_ok=True) | |
args.img1 = root + f'ref_{str(id)}.png' | |
args.img2 = root + f'tgt_{str(id)}.png' | |
gray0 = cv2.imread(args.img1, 0) | |
gray1 = cv2.imread(args.img2, 0) | |
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1) | |
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None] | |
x = {'image0': torch_gray0, 'image1': torch_gray1} | |
pred = pipeline_model(x) | |
pred = batch_to_np(pred) | |
kp0, kp1 = pred["keypoints0"], pred["keypoints1"] | |
m0 = pred["matches0"] | |
line_seg0, line_seg1 = pred["lines0"], pred["lines1"] | |
line_matches = pred["line_matches0"] | |
valid_matches = m0 != -1 | |
match_indices = m0[valid_matches] | |
matched_kps0 = kp0[valid_matches] | |
matched_kps1 = kp1[match_indices] | |
valid_matches = line_matches != -1 | |
match_indices = line_matches[valid_matches] | |
matched_lines0 = line_seg0[valid_matches] | |
matched_lines1 = line_seg1[match_indices] | |
# Plot the matches | |
gray0 = cv2.imread(args.img1, 0) | |
gray1 = cv2.imread(args.img2, 0) | |
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR) | |
plot_images([img0, img1], dpi=200, pad=2.0) | |
plot_lines([line_seg0, line_seg1], ps=4, lw=2) | |
plt.gcf().canvas.manager.set_window_title('Detected Lines') | |
# plt.tight_layout() | |
plt.savefig(f'{saveto}/{md}_det_{id}.png') | |
plot_images([img0, img1], dpi=200, pad=2.0) | |
plot_color_line_matches([matched_lines0, matched_lines1], lw=3) | |
plt.gcf().canvas.manager.set_window_title('Line Matches') | |
# plt.tight_layout() | |
plt.savefig(f'{saveto}/{md}_mat_{id}.png') | |
whitebg = 1 | |
show.Canvas.white_overlay = whitebg | |
painter = show.painters.HAWPainter() | |
fig_file = f'{saveto}/{md}_det1.png' | |
outputs = {'lines_pred': line_seg0.reshape(-1,4)} | |
with show.image_canvas(args.img1, fig_file=fig_file) as ax: | |
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan') | |
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink') | |
fig_file = f'{saveto}/{md}_det2.png' | |
outputs = {'lines_pred': line_seg1.reshape(-1,4)} | |
with show.image_canvas(args.img2, fig_file=fig_file) as ax: | |
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan') | |
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink') | |
if __name__ == '__main__': | |
main() | |