ScaleLSD / line_matching /run_list.py
Nan Xue
update
4c954ae
import argparse
import os
from os.path import join
import sys
import cv2
import torch
from matplotlib import pyplot as plt
from tqdm import tqdm
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
from gluestick.drawing import plot_images, plot_lines, plot_color_line_matches, plot_keypoints, plot_matches
# from gluestick.models.two_view_pipeline import TwoViewPipeline
from line_matching.two_view_pipeline import TwoViewPipeline
from scalelsd.base import show, WireframeGraph
def main():
# Parse input parameters
parser = argparse.ArgumentParser(
prog='GlueStick Demo',
description='Demo app to show the point and line matches obtained by GlueStick')
parser.add_argument('-inum', default=None, type=int)
parser.add_argument('-imax', default=None, type=int)
parser.add_argument('-img1', default=join('resources' + os.path.sep + 'img1.jpg'))
parser.add_argument('-img2', default=join('resources' + os.path.sep + 'img2.jpg'))
parser.add_argument('--max_pts', type=int, default=1000)
parser.add_argument('--max_lines', type=int, default=300)
parser.add_argument('--model', default='scalelsd', type=str)
parser.add_argument('--test_root', type=str, default='data-ssl/0images-pre/')
args = parser.parse_args()
# Evaluation config
conf = {
'name': 'two_view_pipeline',
'use_lines': True,
'extractor': {
'name': 'wireframe',
'sp_params': {
'force_num_keypoints': False,
'max_num_keypoints': args.max_pts,
},
'wireframe_params': {
'merge_points': True,
'merge_line_endpoints': True,
# 'merge_line_endpoints': False,
},
'max_n_lines': args.max_lines,
},
'matcher': {
'name': 'gluestick',
'weights': str(GLUESTICK_ROOT / 'resources' / 'weights' / 'checkpoint_GlueStick_MD.tar'),
'trainable': False,
},
'ground_truth': {
'from_pose_depth': False,
}
}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pipeline_model = TwoViewPipeline(conf).to(device).eval()
pipeline_model.extractor.update_conf(None)
md = args.model
root = args.test_root
if args.inum is not None:
ids = [args.inum]
elif args.imax is not None:
ids = range(args.inum, args.imax+1)
else:
l_imgs = int(len(os.listdir(root))/2)
ids = range(l_imgs)
for id in tqdm(ids):
saveto = f'temp_output/matching_results/{md}/{id}'
os.makedirs(saveto, exist_ok=True)
args.img1 = root + f'ref_{str(id)}.png'
args.img2 = root + f'tgt_{str(id)}.png'
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
torch_gray0, torch_gray1 = torch_gray0.to(device)[None], torch_gray1.to(device)[None]
x = {'image0': torch_gray0, 'image1': torch_gray1}
pred = pipeline_model(x)
pred = batch_to_np(pred)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0 = pred["matches0"]
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
line_matches = pred["line_matches0"]
valid_matches = m0 != -1
match_indices = m0[valid_matches]
matched_kps0 = kp0[valid_matches]
matched_kps1 = kp1[match_indices]
valid_matches = line_matches != -1
match_indices = line_matches[valid_matches]
matched_lines0 = line_seg0[valid_matches]
matched_lines1 = line_seg1[match_indices]
# Plot the matches
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(gray1, cv2.COLOR_GRAY2BGR)
plot_images([img0, img1], dpi=200, pad=2.0)
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
plt.gcf().canvas.manager.set_window_title('Detected Lines')
# plt.tight_layout()
plt.savefig(f'{saveto}/{md}_det_{id}.png')
plot_images([img0, img1], dpi=200, pad=2.0)
plot_color_line_matches([matched_lines0, matched_lines1], lw=3)
plt.gcf().canvas.manager.set_window_title('Line Matches')
# plt.tight_layout()
plt.savefig(f'{saveto}/{md}_mat_{id}.png')
whitebg = 1
show.Canvas.white_overlay = whitebg
painter = show.painters.HAWPainter()
fig_file = f'{saveto}/{md}_det1.png'
outputs = {'lines_pred': line_seg0.reshape(-1,4)}
with show.image_canvas(args.img1, fig_file=fig_file) as ax:
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
fig_file = f'{saveto}/{md}_det2.png'
outputs = {'lines_pred': line_seg1.reshape(-1,4)}
with show.image_canvas(args.img2, fig_file=fig_file) as ax:
# painter.draw_wireframe(ax,outputs, edge_color='orange', vertex_color='Cyan')
painter.draw_wireframe(ax,outputs, edge_color='midnightblue', vertex_color='deeppink')
if __name__ == '__main__':
main()