final / app.py
chjivan's picture
Upload 2 files
5a250ed verified
raw
history blame
12.2 kB
import streamlit as st
import torch
from transformers import BertForSequenceClassification, BertTokenizerFast
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import time
import pandas as pd
import base64
from PIL import Image
import io
# Set page configuration
st.set_page_config(
page_title="SMS Spam Guard",
page_icon="🛡️",
layout="wide",
initial_sidebar_state="expanded"
)
# Generate SafeTalk logo as base64 (blue shield with "ST" inside)
def create_logo():
from PIL import Image, ImageDraw, ImageFont
import io
import base64
# Create a new image with a transparent background
img = Image.new('RGBA', (200, 200), color=(0, 0, 0, 0))
draw = ImageDraw.Draw(img)
# Draw a shield shape
shield_color = (30, 58, 138) # Dark blue
# Shield outline
points = [(100, 10), (180, 50), (160, 170), (100, 190), (40, 170), (20, 50)]
draw.polygon(points, fill=shield_color)
# Try to load a font, or use default
try:
font = ImageFont.truetype("arial.ttf", 80)
except IOError:
font = ImageFont.load_default()
# Add "ST" text in white
draw.text((70, 60), "ST", fill=(255, 255, 255), font=font)
# Convert to base64 for embedding
buffered = io.BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
# Custom CSS for styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem !important;
color: #1E3A8A;
font-weight: 700;
margin-bottom: 0.5rem;
}
.sub-header {
font-size: 1.1rem;
color: #6B7280;
margin-bottom: 2rem;
}
.highlight {
background-color: #F3F4F6;
padding: 1.5rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
.result-card {
background-color: #F0F9FF;
padding: 1.5rem;
border-radius: 0.5rem;
border-left: 5px solid #3B82F6;
margin-bottom: 1rem;
}
.spam-alert {
background-color: #FEF2F2;
border-left: 5px solid #EF4444;
}
.ham-alert {
background-color: #ECFDF5;
border-left: 5px solid #10B981;
}
.footer {
text-align: center;
margin-top: 3rem;
font-size: 0.8rem;
color: #9CA3AF;
}
.metrics-container {
display: flex;
justify-content: space-between;
margin-top: 1rem;
}
.metric-item {
text-align: center;
padding: 1rem;
background-color: #F9FAFB;
border-radius: 0.5rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
}
.language-tag {
display: inline-block;
padding: 0.25rem 0.5rem;
background-color: #E0E7FF;
color: #4F46E5;
border-radius: 9999px;
font-size: 0.8rem;
font-weight: 500;
margin-right: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_language_model():
"""Load the language detection model"""
model_name = "papluca/xlm-roberta-base-language-detection"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return tokenizer, model
@st.cache_resource
def load_spam_model():
"""Load the fine-tuned BERT spam detection model"""
model_path = "chjivan/final"
tokenizer = BertTokenizerFast.from_pretrained(model_path)
model = BertForSequenceClassification.from_pretrained(model_path)
return tokenizer, model
def detect_language(text, tokenizer, model):
"""Detect the language of the input text"""
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
# Get predictions and convert to probabilities
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)[0]
# Get the predicted language and its probability
predicted_class_id = torch.argmax(probabilities).item()
predicted_language = model.config.id2label[predicted_class_id]
confidence = probabilities[predicted_class_id].item()
# Get top 3 languages with their probabilities
top_3_indices = torch.topk(probabilities, 3).indices.tolist()
top_3_probs = torch.topk(probabilities, 3).values.tolist()
top_3_langs = [(model.config.id2label[idx], prob) for idx, prob in zip(top_3_indices, top_3_probs)]
return predicted_language, confidence, top_3_langs
def classify_spam(text, tokenizer, model):
"""Classify the input text as spam or ham"""
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
# Get predictions and convert to probabilities
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)[0]
# Get the predicted class and its probability (0: ham, 1: spam)
predicted_class_id = torch.argmax(probabilities).item()
confidence = probabilities[predicted_class_id].item()
is_spam = predicted_class_id == 1
return is_spam, confidence
# Generate and cache logo
logo_base64 = create_logo()
logo_html = f'<img src="data:image/png;base64,{logo_base64}" style="height:150px;">'
# Load both models
with st.spinner("Loading models... This may take a moment."):
lang_tokenizer, lang_model = load_language_model()
spam_tokenizer, spam_model = load_spam_model()
# App Header with logo
col1, col2 = st.columns([1, 5])
with col1:
st.markdown(logo_html, unsafe_allow_html=True)
with col2:
st.markdown('<h1 class="main-header">SMS Spam Guard</h1>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">智能短信垃圾过滤助手 by SafeTalk Communications Ltd.</p>', unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown(logo_html, unsafe_allow_html=True)
st.markdown("### About SafeTalk")
st.markdown("SafeTalk Communications Ltd. provides intelligent communication security solutions to protect users from spam and fraudulent messages.")
st.markdown("#### Our Technology")
st.markdown("- ✅ Advanced AI-powered spam detection")
st.markdown("- 🌐 Multi-language support")
st.markdown("- 🔒 Secure and private processing")
st.markdown("- ⚡ Real-time analysis")
st.markdown("---")
st.markdown("### Sample Messages")
if st.button("Sample Spam (English)"):
st.session_state.sms_input = "URGENT: You have won a $1,000 Walmart gift card. Go to http://bit.ly/claim-prize to claim now before it expires!"
if st.button("Sample Legitimate (English)"):
st.session_state.sms_input = "Your Amazon package will be delivered today. Thanks for ordering from Amazon!"
if st.button("Sample Message (French)"):
st.session_state.sms_input = "Bonjour! Votre réservation pour le restaurant est confirmée pour ce soir à 20h. À bientôt!"
if st.button("Sample Message (Spanish)"):
st.session_state.sms_input = "Hola, tu cita médica está programada para mañana a las 10:00. Por favor llega 15 minutos antes."
# Main Content
st.markdown('<div class="highlight">', unsafe_allow_html=True)
# Input form
sms_input = st.text_area(
"Enter the SMS message to analyze:",
value=st.session_state.get("sms_input", ""),
height=100,
key="sms_input",
help="Enter the SMS message you want to analyze for spam"
)
analyze_button = st.button("📱 Analyze Message", use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)
# Process input and display results
if analyze_button and sms_input:
with st.spinner("Analyzing message..."):
# Step 1: Language Detection
lang_start_time = time.time()
lang_code, lang_confidence, top_langs = detect_language(sms_input, lang_tokenizer, lang_model)
lang_time = time.time() - lang_start_time
# Create mapping for full language names
lang_names = {
"ar": "Arabic",
"bg": "Bulgarian",
"de": "German",
"el": "Greek",
"en": "English",
"es": "Spanish",
"fr": "French",
"hi": "Hindi",
"it": "Italian",
"ja": "Japanese",
"nl": "Dutch",
"pl": "Polish",
"pt": "Portuguese",
"ru": "Russian",
"sw": "Swahili",
"th": "Thai",
"tr": "Turkish",
"ur": "Urdu",
"vi": "Vietnamese",
"zh": "Chinese"
}
lang_name = lang_names.get(lang_code, lang_code)
# Step 2: Spam Classification
spam_start_time = time.time()
is_spam, spam_confidence = classify_spam(sms_input, spam_tokenizer, spam_model)
spam_time = time.time() - spam_start_time
# Display Language Detection Results
st.markdown("### Analysis Results")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### 📊 Language Detection")
st.markdown(f'<div class="result-card">', unsafe_allow_html=True)
st.markdown(f'<span class="language-tag">{lang_name}</span> Detected with {lang_confidence:.1%} confidence', unsafe_allow_html=True)
# Display top 3 languages
st.markdown("##### Top language probabilities:")
for lang_code, prob in top_langs:
lang_full = lang_names.get(lang_code, lang_code)
st.markdown(f"- {lang_full}: {prob:.1%}")
st.markdown(f"⏱️ Processing time: {lang_time:.3f} seconds")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown("#### 🔍 Spam Detection")
if is_spam:
st.markdown(f'<div class="result-card spam-alert">', unsafe_allow_html=True)
st.markdown(f"⚠️ **SPAM DETECTED** with {spam_confidence:.1%} confidence")
st.markdown("This message appears to be spam and potentially harmful.")
else:
st.markdown(f'<div class="result-card ham-alert">', unsafe_allow_html=True)
st.markdown(f"✅ **LEGITIMATE MESSAGE** with {spam_confidence:.1%} confidence")
st.markdown("This message appears to be legitimate.")
st.markdown(f"⏱️ Processing time: {spam_time:.3f} seconds")
st.markdown('</div>', unsafe_allow_html=True)
# Summary and Recommendations
st.markdown("### 📋 Summary & Recommendations")
if is_spam:
st.warning("📵 **Recommended Action**: This message should be blocked or moved to spam folder.")
st.markdown("""
**Why this is likely spam:**
- Contains suspicious language patterns
- May include urgent calls to action
- Could contain unsolicited offers
""")
else:
st.success("✅ **Recommended Action**: This message can be delivered to the inbox.")
# Chart for visualization
st.markdown("### 📈 Confidence Visualization")
chart_data = pd.DataFrame({
'Task': ['Language Detection', 'Spam Classification'],
'Confidence': [lang_confidence, spam_confidence if is_spam else 1-spam_confidence]
})
st.bar_chart(chart_data.set_index('Task'))
# Footer
st.markdown('<div class="footer">', unsafe_allow_html=True)
st.markdown("© 2023 SafeTalk Communications Ltd. | www.safetalk.com")
st.markdown("SMS Spam Guard is an intelligent message filtering solution to protect users from unwanted communications.")
st.markdown('</div>', unsafe_allow_html=True)