Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# app.py - RLAnOxPeptide Gradio Web Application | |
import os | |
import torch | |
import torch.nn as nn | |
import pandas as pd | |
import joblib | |
import numpy as np | |
import gradio as gr | |
from sklearn.cluster import KMeans | |
from tqdm import tqdm | |
import transformers | |
import time | |
import copy # ✅ ADDED: For deep copying the base model | |
# NEW DEPENDENCY: peft library for LoRA | |
from peft import PeftModel | |
# Suppress verbose logging from transformers | |
transformers.logging.set_verbosity_error() | |
# -------------------------------------------------------------------------- | |
# SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS | |
# -------------------------------------------------------------------------- | |
# --- Vocabulary Definition --- | |
AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY" | |
token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)} | |
token2id["<PAD>"] = 0 | |
token2id["<EOS>"] = 1 | |
id2token = {i: t for t, i in token2id.items()} | |
VOCAB_SIZE = len(token2id) | |
# --- Validator's Feature Extractor Class --- | |
# ✅ MODIFIED: Accepts a pre-loaded model instead of loading its own. | |
class LoRAProtT5Extractor: | |
def __init__(self, preloaded_base_model, preloaded_tokenizer, lora_adapter_path): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Initializing Validator Feature Extractor on device: {self.device}") | |
base_model = preloaded_base_model | |
self.tokenizer = preloaded_tokenizer | |
if not os.path.exists(lora_adapter_path): | |
raise FileNotFoundError(f"Error: Validator LoRA adapter directory not found at: {lora_adapter_path}") | |
print(f" - [Validator] Applying LoRA adapter from: {lora_adapter_path}") | |
lora_model = PeftModel.from_pretrained(base_model, lora_adapter_path) | |
print(" - [Validator] Merging LoRA weights for faster inference...") | |
self.model = lora_model.merge_and_unload().to(self.device) | |
self.model.eval() | |
print(" - Validator feature extractor is ready.") | |
def encode(self, sequence): | |
if not sequence or not isinstance(sequence, str): | |
return np.zeros((1, 1024), dtype=np.float32) | |
seq_spaced = " ".join(list(sequence)) | |
encoded_input = self.tokenizer(seq_spaced, return_tensors='pt', padding=True, truncation=True) | |
encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()} | |
with torch.no_grad(): | |
embedding = self.model(**encoded_input).last_hidden_state | |
emb_np = embedding.squeeze(0).cpu().numpy() | |
return emb_np if emb_np.shape[0] > 0 else np.zeros((1, 1024), dtype=np.float32) | |
# --- Predictor Model Head Architecture (Unchanged) --- | |
class AntioxidantPredictor(nn.Module): | |
def __init__(self, input_dim=1914, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1): | |
super(AntioxidantPredictor, self).__init__() | |
self.prott5_dim = 1024 | |
self.handcrafted_dim = input_dim - self.prott5_dim | |
self.seq_len = 16 | |
self.prott5_feature_dim = 64 | |
encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=True) | |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers) | |
fused_dim = self.prott5_feature_dim + self.handcrafted_dim | |
self.fusion_fc = nn.Sequential(nn.Linear(fused_dim, 1024), nn.ReLU(), nn.Dropout(0.3), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.3)) | |
self.classifier = nn.Sequential(nn.Linear(512, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, 1)) | |
self.temperature = nn.Parameter(torch.ones(1), requires_grad=False) | |
def forward(self, x): | |
batch_size = x.size(0) | |
prot_t5_features = x[:, :self.prott5_dim] | |
handcrafted_features = x[:, self.prott5_dim:] | |
prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim) | |
encoded_seq = self.transformer_encoder(prot_t5_seq) | |
refined_prott5 = encoded_seq.mean(dim=1) | |
fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1) | |
fused_output = self.fusion_fc(fused_features) | |
logits = self.classifier(fused_output) | |
return logits / self.temperature | |
def get_temperature(self): | |
return self.temperature.item() | |
# --- Generator Model Architecture --- | |
# ✅ MODIFIED: Accepts a pre-loaded model instead of loading its own. | |
class AdvancedProtT5Generator(nn.Module): | |
def __init__(self, preloaded_base_model, lora_adapter_path, vocab_size): | |
super(AdvancedProtT5Generator, self).__init__() | |
base_model = preloaded_base_model | |
print(f" - [Generator] Applying LoRA adapter from: {lora_adapter_path}") | |
self.backbone = PeftModel.from_pretrained(base_model, lora_adapter_path) | |
self.embed_tokens = self.backbone.get_input_embeddings() | |
embed_dim = self.backbone.config.d_model | |
self.lm_head = nn.Linear(embed_dim, vocab_size) | |
self.vocab_size = vocab_size | |
self.eos_token_id = token2id["<EOS>"] | |
self.pad_token_id = token2id["<PAD>"] | |
print(" - Advanced Generator framework initialized.") | |
def forward(self, input_ids): | |
attention_mask = (input_ids != self.pad_token_id).int() | |
outputs = self.backbone(input_ids=input_ids, attention_mask=attention_mask) | |
sequence_output = outputs.last_hidden_state | |
logits = self.lm_head(sequence_output) | |
return logits | |
def sample(self, batch_size, max_length=20, device="cpu", temperature=2.5, min_decoded_length=3): | |
start_token = torch.randint(2, self.vocab_size, (batch_size, 1), device=device) | |
generated = start_token | |
for _ in range(max_length - 1): | |
logits = self.forward(generated) | |
next_logits = logits[:, -1, :] / temperature | |
if generated.size(1) < min_decoded_length: | |
next_logits[:, self.eos_token_id] = -float("inf") | |
probs = torch.softmax(next_logits, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated = torch.cat((generated, next_token), dim=1) | |
if (generated == self.eos_token_id).any(dim=1).all(): | |
break | |
return generated | |
def decode(self, token_ids_batch): | |
sequences = [] | |
for ids_tensor in token_ids_batch: | |
seq = "" | |
for token_id in ids_tensor.tolist()[1:]: | |
if token_id == self.eos_token_id: break | |
if token_id == token2id["<PAD>"]: continue | |
seq += id2token.get(token_id, "?") | |
sequences.append(seq) | |
return sequences | |
# --- CRITICAL DEPENDENCY: feature_extract.py (Unchanged) --- | |
try: | |
from feature_extract import extract_features | |
except ImportError: | |
raise gr.Error("Fatal Error: `feature_extract.py` not found. This file is required. Please upload it to your repository.") | |
# --- Clustering Logic (Unchanged) --- | |
def cluster_sequences(generator, sequences, num_clusters, device): | |
if not sequences or len(sequences) < num_clusters: | |
return sequences[:num_clusters] | |
with torch.no_grad(): | |
token_ids_list = [] | |
max_len = max(len(seq) for seq in sequences) + 2 | |
for seq in sequences: | |
ids = [np.random.randint(2, VOCAB_SIZE)] + [token2id.get(aa, 0) for aa in seq] + [generator.eos_token_id] | |
ids += [token2id["<PAD>"]] * (max_len - len(ids)) | |
token_ids_list.append(ids) | |
input_ids = torch.tensor(token_ids_list, dtype=torch.long, device=device) | |
embeddings = generator.embed_tokens(input_ids) | |
mask = (input_ids != token2id["<PAD>"]).unsqueeze(-1).float() | |
seq_embeds = (embeddings * mask).sum(dim=1) / (mask.sum(dim=1) + 1e-9) | |
seq_embeds_np = seq_embeds.cpu().numpy() | |
kmeans = KMeans(n_clusters=int(num_clusters), random_state=42, n_init='auto').fit(seq_embeds_np) | |
reps = [] | |
for i in range(int(num_clusters)): | |
idxs = np.where(kmeans.labels_ == i)[0] | |
if len(idxs) == 0: continue | |
center = kmeans.cluster_centers_[i] | |
distances = np.linalg.norm(seq_embeds_np[idxs] - center, axis=1) | |
rep_idx = idxs[np.argmin(distances)] | |
reps.append(sequences[rep_idx]) | |
return reps | |
# -------------------------------------------------------------------------- | |
# SECTION 2: GLOBAL MODEL AND DEPENDENCY LOADING | |
# -------------------------------------------------------------------------- | |
print("--- Starting Application: Loading all models and dependencies ---") | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
try: | |
# --- Define file paths --- | |
PROTT5_BASE_MODEL_ID = "Rostlab/prot_t5_xl_uniref50" | |
VALIDATOR_LORA_PATH = "./lora_finetuned_prott5" | |
PREDICTOR_HEAD_CHECKPOINT_PATH = "./predictor_with_lora_checkpoints/final_predictor_with_lora.pth" | |
SCALER_PATH = "./predictor_with_lora_checkpoints/scaler_lora.pkl" | |
GENERATOR_LORA_DIR = "./generator_with_lora_output/final_lora_generator" | |
GENERATOR_LM_HEAD_PATH = os.path.join(GENERATOR_LORA_DIR, "lm_head.pth") | |
# ✅ OPTIMIZED: Load the base model and tokenizer only ONCE | |
print(f"--- Loading Base ProtT5 Model ({PROTT5_BASE_MODEL_ID}) just once... ---") | |
base_prot_t5_model = transformers.T5EncoderModel.from_pretrained(PROTT5_BASE_MODEL_ID) | |
base_tokenizer = transformers.T5Tokenizer.from_pretrained(PROTT5_BASE_MODEL_ID) | |
print("✅ Base ProtT5 Model loaded.") | |
# --- Load Validator System --- | |
print("\n--- Initializing Validator System ---") | |
VALIDATOR_SCALER = joblib.load(SCALER_PATH) | |
# Pass a deep copy of the base model to prevent modification conflicts | |
VALIDATOR_EXTRACTOR = LoRAProtT5Extractor( | |
preloaded_base_model=copy.deepcopy(base_prot_t5_model), | |
preloaded_tokenizer=base_tokenizer, | |
lora_adapter_path=VALIDATOR_LORA_PATH | |
) | |
PREDICTOR_MODEL = AntioxidantPredictor(input_dim=1914) | |
PREDICTOR_MODEL.load_state_dict(torch.load(PREDICTOR_HEAD_CHECKPOINT_PATH, map_location=DEVICE)) | |
PREDICTOR_MODEL.to(DEVICE) | |
PREDICTOR_MODEL.eval() | |
print("✅ Validator System loaded successfully.") | |
# --- Load Generator System --- | |
print("\n--- Initializing Generator System ---") | |
# Pass a deep copy of the base model here as well | |
GENERATOR_MODEL = AdvancedProtT5Generator( | |
preloaded_base_model=copy.deepcopy(base_prot_t5_model), | |
lora_adapter_path=GENERATOR_LORA_DIR, | |
vocab_size=VOCAB_SIZE | |
) | |
if not os.path.exists(GENERATOR_LM_HEAD_PATH): | |
raise FileNotFoundError(f"Generator's lm_head weights not found at: {GENERATOR_LM_HEAD_PATH}") | |
GENERATOR_MODEL.lm_head.load_state_dict(torch.load(GENERATOR_LM_HEAD_PATH, map_location=DEVICE)) | |
GENERATOR_MODEL.to(DEVICE) | |
GENERATOR_MODEL.eval() | |
print("✅ Generator System loaded successfully.") | |
print("\n--- All models loaded! Gradio app is ready. ---\n") | |
except Exception as e: | |
print(f"💥 FATAL ERROR during model loading: {e}") | |
raise gr.Error(f"A required model or file could not be loaded. Please check your repository file structure and paths. Error details: {e}") | |
# -------------------------------------------------------------------------- | |
# SECTION 3: WRAPPER FUNCTIONS FOR GRADIO UI | |
# -------------------------------------------------------------------------- | |
def predict_peptide_wrapper(sequence_str): | |
if not sequence_str or not isinstance(sequence_str, str) or any(c not in AMINO_ACIDS for c in sequence_str.upper()): | |
return "0.0000", "Error: Please enter a valid peptide sequence using standard amino acids." | |
try: | |
features = extract_features(sequence_str.upper(), VALIDATOR_EXTRACTOR, L_fixed=29, d_model_pe=16) | |
scaled_features = VALIDATOR_SCALER.transform(features.reshape(1, -1)) | |
with torch.no_grad(): | |
features_tensor = torch.tensor(scaled_features, dtype=torch.float32).to(DEVICE) | |
logits = PREDICTOR_MODEL(features_tensor) | |
probability = torch.sigmoid(logits).squeeze().item() | |
classification = "Antioxidant" if probability >= 0.5 else "Non-Antioxidant" | |
return f"{probability:.4f}", classification | |
except Exception as e: | |
print(f"Prediction Error for sequence '{sequence_str}': {e}") | |
return "N/A", f"An error occurred during prediction: {e}" | |
def generate_peptide_wrapper(num_to_generate, min_len, max_len, temperature, diversity_factor, progress=gr.Progress()): | |
num_to_generate = int(num_to_generate) | |
min_len = int(min_len) | |
max_len = int(max_len) | |
if min_len > max_len: | |
gr.Warning("Minimum Length cannot be greater than Maximum Length. Adjusting min_len = max_len.") | |
min_len = max_len | |
try: | |
validated_pool = {} | |
attempts = 0 | |
max_attempts = 20 | |
generation_batch_size = 10 | |
while len(validated_pool) < num_to_generate and attempts < max_attempts: | |
progress(len(validated_pool) / num_to_generate, desc=f"Found {len(validated_pool)} / {num_to_generate} peptides. (Attempt {attempts+1}/{max_attempts})") | |
with torch.no_grad(): | |
generated_tokens = GENERATOR_MODEL.sample( | |
batch_size=generation_batch_size, max_length=max_len, device=DEVICE, | |
temperature=temperature, min_decoded_length=min_len | |
) | |
decoded_sequences = GENERATOR_MODEL.decode(generated_tokens) | |
new_candidates = [] | |
for seq in decoded_sequences: | |
if min_len <= len(seq) <= max_len: | |
if seq not in validated_pool: | |
new_candidates.append(seq) | |
for seq in new_candidates: | |
prob_str, _ = predict_peptide_wrapper(seq) | |
try: | |
prob = float(prob_str) | |
if prob > 0.90: | |
validated_pool[seq] = prob | |
if len(validated_pool) >= num_to_generate: | |
break | |
except (ValueError, TypeError): | |
continue | |
attempts += 1 | |
if len(validated_pool) >= num_to_generate: | |
break | |
progress(1.0, desc=f"Collected {len(validated_pool)} high-quality peptides. Clustering for diversity...") | |
time.sleep(1) | |
if not validated_pool: | |
return pd.DataFrame([{"Sequence": "Could not generate any high-activity peptides (>0.9 prob) with current settings.", "Predicted Probability": "N/A"}]) | |
high_quality_sequences = list(validated_pool.keys()) | |
final_diverse_seqs = cluster_sequences(GENERATOR_MODEL, high_quality_sequences, num_to_generate, DEVICE) | |
final_results = [(seq, f"{validated_pool[seq]:.4f}") for seq in final_diverse_seqs] | |
final_results.sort(key=lambda x: float(x[1]), reverse=True) | |
return pd.DataFrame(final_results, columns=["Sequence", "Predicted Probability"]) | |
except Exception as e: | |
print(f"Generation Pipeline Error: {e}") | |
return pd.DataFrame([{"Sequence": f"An error occurred during generation: {e}", "Predicted Probability": "N/A"}]) | |
# -------------------------------------------------------------------------- | |
# SECTION 4: GRADIO UI CONSTRUCTION (Unchanged) | |
# -------------------------------------------------------------------------- | |
with gr.Blocks(theme=gr.themes.Soft(), title="RLAnOxPeptide") as demo: | |
gr.Markdown("# RLAnOxPeptide: Intelligent Peptide Design and Prediction") | |
gr.Markdown("An integrated framework combining reinforcement learning and a Transformer model for the efficient prediction and innovative design of antioxidant peptides.") | |
with gr.Tabs(): | |
# --- PREDICTION TAB --- | |
with gr.TabItem("Peptide Activity Predictor"): | |
gr.Markdown("### Enter an amino acid sequence to predict its antioxidant activity.") | |
with gr.Row(): | |
peptide_input = gr.Textbox(label="Peptide Sequence", placeholder="e.g., WHYHDYKY", scale=3) | |
predict_button = gr.Button("Predict", variant="primary", scale=1) | |
with gr.Row(): | |
probability_output = gr.Textbox(label="Predicted Probability", interactive=False) | |
class_output = gr.Textbox(label="Predicted Class", interactive=False) | |
predict_button.click( | |
fn=predict_peptide_wrapper, | |
inputs=peptide_input, | |
outputs=[probability_output, class_output] | |
) | |
gr.Examples( | |
examples=[["WHYHDYKY"], ["YPGG"], ["LVLHEHGGN"], ["WKYG"]], | |
inputs=peptide_input, | |
fn=predict_peptide_wrapper, | |
outputs=[probability_output, class_output], | |
cache_examples=True | |
) | |
# --- GENERATION TAB --- | |
with gr.TabItem("Novel Sequence Generator"): | |
gr.Markdown("### Set parameters to generate novel, high-activity antioxidant peptides.") | |
with gr.Column(): | |
with gr.Row(): | |
num_input = gr.Slider(minimum=1, maximum=10, value=10, step=1, label="Number of Final Peptides to Generate") | |
min_len_input = gr.Slider(minimum=2, maximum=20, value=3, step=1, label="Minimum Length") | |
max_len_input = gr.Slider(minimum=2, maximum=20, value=20, step=1, label="Maximum Length") | |
with gr.Row(): | |
temp_input = gr.Slider(minimum=0.5, maximum=3.0, value=2.5, step=0.1, label="Temperature (Higher = More random)") | |
diversity_input = gr.Slider(minimum=1.1, maximum=5.0, value=1.5, step=0.1, label="Diversity Factor (Larger initial pool for clustering)") | |
generate_button = gr.Button("Generate Peptides", variant="primary") | |
results_output = gr.DataFrame(headers=["Sequence", "Predicted Probability"], label="Generated & Validated Peptides (>90% Probability)", wrap=True) | |
def update_min_len_range(max_len): | |
return gr.Slider(maximum=max_len) | |
max_len_input.change(fn=update_min_len_range, inputs=max_len_input, outputs=max_len_input) | |
def update_max_len_range(min_len): | |
return gr.Slider(minimum=min_len) | |
min_len_input.change(fn=update_max_len_range, inputs=min_len_input, outputs=max_len_input) | |
generate_button.click( | |
fn=generate_peptide_wrapper, | |
inputs=[num_input, min_len_input, max_len_input, temp_input, diversity_input], | |
outputs=results_output | |
) | |
if __name__ == "__main__": | |
demo.launch() |