File size: 18,853 Bytes
6f96910
 
 
 
836aa2b
7b2918a
 
 
 
 
 
 
 
 
 
 
f1d641f
836aa2b
7b2918a
456a63e
 
 
f1d641f
7b2918a
 
 
 
 
 
f1d641f
7b2918a
 
 
 
 
 
 
836aa2b
ed68bd1
836aa2b
456a63e
836aa2b
f2cec0b
ed68bd1
8a4f49a
836aa2b
 
456a63e
 
ed68bd1
456a63e
836aa2b
456a63e
 
ed68bd1
456a63e
f2cec0b
ed68bd1
f2cec0b
6a02daf
 
 
 
 
 
 
 
 
 
 
ed68bd1
 
7b2918a
6f96910
7b2918a
334ea25
 
 
f1d641f
ad0bd0b
7b2918a
334ea25
f2cec0b
 
334ea25
6f96910
334ea25
 
 
 
 
 
 
6f96910
 
f2cec0b
6f96910
 
 
ed68bd1
836aa2b
 
ed68bd1
836aa2b
ed68bd1
 
836aa2b
ed68bd1
 
 
 
 
836aa2b
7b2918a
ed68bd1
7b2918a
 
 
ed68bd1
8a4f49a
7b2918a
ed68bd1
 
 
 
7b2918a
8a4f49a
7b2918a
 
 
 
 
 
 
 
 
 
 
ed68bd1
 
7b2918a
 
 
6f96910
7b2918a
 
f1d641f
7b2918a
ed68bd1
 
6f96910
 
 
456a63e
7b2918a
6f96910
7b2918a
f1d641f
7b2918a
836aa2b
7b2918a
 
 
 
 
ed68bd1
7b2918a
ed68bd1
7b2918a
 
 
 
 
6f96910
7b2918a
 
ed68bd1
7b2918a
ed68bd1
 
 
 
 
 
 
7b2918a
 
6f96910
7b2918a
6f96910
 
 
7b2918a
 
f1d641f
8a4f49a
ed68bd1
 
 
 
 
 
836aa2b
 
 
 
 
 
ed68bd1
836aa2b
ed68bd1
836aa2b
ed68bd1
836aa2b
 
ed68bd1
 
6f96910
ed68bd1
7b2918a
 
ed68bd1
 
 
836aa2b
 
ed68bd1
836aa2b
ed68bd1
 
7b2918a
ed68bd1
 
 
7b2918a
 
ed68bd1
6f96910
 
7b2918a
 
6f96910
 
7b2918a
 
ed68bd1
7b2918a
 
 
 
836aa2b
7b2918a
 
ed68bd1
 
7b2918a
 
 
 
 
 
 
 
 
 
6f96910
 
7b2918a
f1d641f
7b2918a
 
 
f1d641f
 
 
 
7b2918a
 
456a63e
f1d641f
456a63e
d977712
f1d641f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2918a
f1d641f
 
7b2918a
 
ed68bd1
7b2918a
 
 
 
 
 
 
 
 
 
6f96910
 
7b2918a
 
456a63e
7b2918a
 
6f96910
7b2918a
 
 
6f96910
7b2918a
 
 
 
 
 
6f96910
 
7b2918a
 
 
 
 
 
 
6f96910
 
 
 
 
7b2918a
 
6f96910
7b2918a
 
 
 
d977712
f1d641f
 
7b2918a
 
6f96910
7b2918a
 
6f96910
7b2918a
f1d641f
 
456a63e
f1d641f
 
 
 
 
7b2918a
 
 
 
 
 
 
bffbeec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# app.py - RLAnOxPeptide Gradio Web Application


import os
import torch
import torch.nn as nn
import pandas as pd
import joblib
import numpy as np
import gradio as gr
from sklearn.cluster import KMeans
from tqdm import tqdm
import transformers
import time
import copy  # βœ… ADDED: For deep copying the base model

# NEW DEPENDENCY: peft library for LoRA
from peft import PeftModel

# Suppress verbose logging from transformers
transformers.logging.set_verbosity_error()

# --------------------------------------------------------------------------
# SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS
# --------------------------------------------------------------------------

# --- Vocabulary Definition ---
AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY"
token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)}
token2id["<PAD>"] = 0
token2id["<EOS>"] = 1
id2token = {i: t for t, i in token2id.items()}
VOCAB_SIZE = len(token2id)


# --- Validator's Feature Extractor Class ---
# βœ… MODIFIED: Accepts a pre-loaded model instead of loading its own.
class LoRAProtT5Extractor:
    def __init__(self, preloaded_base_model, preloaded_tokenizer, lora_adapter_path):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Initializing Validator Feature Extractor on device: {self.device}")

        base_model = preloaded_base_model
        self.tokenizer = preloaded_tokenizer
        
        if not os.path.exists(lora_adapter_path):
            raise FileNotFoundError(f"Error: Validator LoRA adapter directory not found at: {lora_adapter_path}")
            
        print(f"  - [Validator] Applying LoRA adapter from: {lora_adapter_path}")
        lora_model = PeftModel.from_pretrained(base_model, lora_adapter_path)
        
        print("  - [Validator] Merging LoRA weights for faster inference...")
        self.model = lora_model.merge_and_unload().to(self.device)
        self.model.eval()
        print("  - Validator feature extractor is ready.")

    def encode(self, sequence):
        if not sequence or not isinstance(sequence, str):
            return np.zeros((1, 1024), dtype=np.float32)
        seq_spaced = " ".join(list(sequence))
        encoded_input = self.tokenizer(seq_spaced, return_tensors='pt', padding=True, truncation=True)
        encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}
        with torch.no_grad():
            embedding = self.model(**encoded_input).last_hidden_state
        emb_np = embedding.squeeze(0).cpu().numpy()
        return emb_np if emb_np.shape[0] > 0 else np.zeros((1, 1024), dtype=np.float32)


# --- Predictor Model Head Architecture (Unchanged) ---
class AntioxidantPredictor(nn.Module):
    def __init__(self, input_dim=1914, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
        super(AntioxidantPredictor, self).__init__()
        self.prott5_dim = 1024
        self.handcrafted_dim = input_dim - self.prott5_dim
        self.seq_len = 16
        self.prott5_feature_dim = 64
        encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
        fused_dim = self.prott5_feature_dim + self.handcrafted_dim
        self.fusion_fc = nn.Sequential(nn.Linear(fused_dim, 1024), nn.ReLU(), nn.Dropout(0.3), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.3))
        self.classifier = nn.Sequential(nn.Linear(512, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, 1))
        self.temperature = nn.Parameter(torch.ones(1), requires_grad=False)
    def forward(self, x):
        batch_size = x.size(0)
        prot_t5_features = x[:, :self.prott5_dim]
        handcrafted_features = x[:, self.prott5_dim:]
        prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
        encoded_seq = self.transformer_encoder(prot_t5_seq)
        refined_prott5 = encoded_seq.mean(dim=1)
        fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
        fused_output = self.fusion_fc(fused_features)
        logits = self.classifier(fused_output)
        return logits / self.temperature
    def get_temperature(self):
        return self.temperature.item()


# --- Generator Model Architecture ---
# βœ… MODIFIED: Accepts a pre-loaded model instead of loading its own.
class AdvancedProtT5Generator(nn.Module):
    def __init__(self, preloaded_base_model, lora_adapter_path, vocab_size):
        super(AdvancedProtT5Generator, self).__init__()
        
        base_model = preloaded_base_model
        print(f"  - [Generator] Applying LoRA adapter from: {lora_adapter_path}")
        self.backbone = PeftModel.from_pretrained(base_model, lora_adapter_path)
        
        self.embed_tokens = self.backbone.get_input_embeddings()
        
        embed_dim = self.backbone.config.d_model
        self.lm_head = nn.Linear(embed_dim, vocab_size)
        
        self.vocab_size = vocab_size
        self.eos_token_id = token2id["<EOS>"]
        self.pad_token_id = token2id["<PAD>"]
        print("  - Advanced Generator framework initialized.")

    def forward(self, input_ids):
        attention_mask = (input_ids != self.pad_token_id).int()
        outputs = self.backbone(input_ids=input_ids, attention_mask=attention_mask)
        sequence_output = outputs.last_hidden_state
        logits = self.lm_head(sequence_output)
        return logits

    def sample(self, batch_size, max_length=20, device="cpu", temperature=2.5, min_decoded_length=3):
        start_token = torch.randint(2, self.vocab_size, (batch_size, 1), device=device)
        generated = start_token
        for _ in range(max_length - 1):
            logits = self.forward(generated)
            next_logits = logits[:, -1, :] / temperature
            if generated.size(1) < min_decoded_length:
                next_logits[:, self.eos_token_id] = -float("inf")
            probs = torch.softmax(next_logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated = torch.cat((generated, next_token), dim=1)
            if (generated == self.eos_token_id).any(dim=1).all():
                break
        return generated

    def decode(self, token_ids_batch):
        sequences = []
        for ids_tensor in token_ids_batch:
            seq = ""
            for token_id in ids_tensor.tolist()[1:]:
                if token_id == self.eos_token_id: break
                if token_id == token2id["<PAD>"]: continue
                seq += id2token.get(token_id, "?")
            sequences.append(seq)
        return sequences

# --- CRITICAL DEPENDENCY: feature_extract.py (Unchanged) ---
try:
    from feature_extract import extract_features
except ImportError:
    raise gr.Error("Fatal Error: `feature_extract.py` not found. This file is required. Please upload it to your repository.")

# --- Clustering Logic (Unchanged) ---
def cluster_sequences(generator, sequences, num_clusters, device):
    if not sequences or len(sequences) < num_clusters:
        return sequences[:num_clusters]
    with torch.no_grad():
        token_ids_list = []
        max_len = max(len(seq) for seq in sequences) + 2
        for seq in sequences:
            ids = [np.random.randint(2, VOCAB_SIZE)] + [token2id.get(aa, 0) for aa in seq] + [generator.eos_token_id]
            ids += [token2id["<PAD>"]] * (max_len - len(ids))
            token_ids_list.append(ids)
        input_ids = torch.tensor(token_ids_list, dtype=torch.long, device=device)
        embeddings = generator.embed_tokens(input_ids)
        mask = (input_ids != token2id["<PAD>"]).unsqueeze(-1).float()
        seq_embeds = (embeddings * mask).sum(dim=1) / (mask.sum(dim=1) + 1e-9)
        seq_embeds_np = seq_embeds.cpu().numpy()
    kmeans = KMeans(n_clusters=int(num_clusters), random_state=42, n_init='auto').fit(seq_embeds_np)
    reps = []
    for i in range(int(num_clusters)):
        idxs = np.where(kmeans.labels_ == i)[0]
        if len(idxs) == 0: continue
        center = kmeans.cluster_centers_[i]
        distances = np.linalg.norm(seq_embeds_np[idxs] - center, axis=1)
        rep_idx = idxs[np.argmin(distances)]
        reps.append(sequences[rep_idx])
    return reps

# --------------------------------------------------------------------------
# SECTION 2: GLOBAL MODEL AND DEPENDENCY LOADING
# --------------------------------------------------------------------------

print("--- Starting Application: Loading all models and dependencies ---")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

try:
    # --- Define file paths ---
    PROTT5_BASE_MODEL_ID = "Rostlab/prot_t5_xl_uniref50"
    VALIDATOR_LORA_PATH = "./lora_finetuned_prott5"
    PREDICTOR_HEAD_CHECKPOINT_PATH = "./predictor_with_lora_checkpoints/final_predictor_with_lora.pth"
    SCALER_PATH = "./predictor_with_lora_checkpoints/scaler_lora.pkl"
    GENERATOR_LORA_DIR = "./generator_with_lora_output/final_lora_generator"
    GENERATOR_LM_HEAD_PATH = os.path.join(GENERATOR_LORA_DIR, "lm_head.pth")

    # βœ… OPTIMIZED: Load the base model and tokenizer only ONCE
    print(f"--- Loading Base ProtT5 Model ({PROTT5_BASE_MODEL_ID}) just once... ---")
    base_prot_t5_model = transformers.T5EncoderModel.from_pretrained(PROTT5_BASE_MODEL_ID)
    base_tokenizer = transformers.T5Tokenizer.from_pretrained(PROTT5_BASE_MODEL_ID)
    print("βœ… Base ProtT5 Model loaded.")

    # --- Load Validator System ---
    print("\n--- Initializing Validator System ---")
    VALIDATOR_SCALER = joblib.load(SCALER_PATH)
    # Pass a deep copy of the base model to prevent modification conflicts
    VALIDATOR_EXTRACTOR = LoRAProtT5Extractor(
        preloaded_base_model=copy.deepcopy(base_prot_t5_model),
        preloaded_tokenizer=base_tokenizer,
        lora_adapter_path=VALIDATOR_LORA_PATH
    )
    PREDICTOR_MODEL = AntioxidantPredictor(input_dim=1914)
    PREDICTOR_MODEL.load_state_dict(torch.load(PREDICTOR_HEAD_CHECKPOINT_PATH, map_location=DEVICE))
    PREDICTOR_MODEL.to(DEVICE)
    PREDICTOR_MODEL.eval()
    print("βœ… Validator System loaded successfully.")

    # --- Load Generator System ---
    print("\n--- Initializing Generator System ---")
    # Pass a deep copy of the base model here as well
    GENERATOR_MODEL = AdvancedProtT5Generator(
        preloaded_base_model=copy.deepcopy(base_prot_t5_model),
        lora_adapter_path=GENERATOR_LORA_DIR,
        vocab_size=VOCAB_SIZE
    )
    if not os.path.exists(GENERATOR_LM_HEAD_PATH):
        raise FileNotFoundError(f"Generator's lm_head weights not found at: {GENERATOR_LM_HEAD_PATH}")
    GENERATOR_MODEL.lm_head.load_state_dict(torch.load(GENERATOR_LM_HEAD_PATH, map_location=DEVICE))
    GENERATOR_MODEL.to(DEVICE)
    GENERATOR_MODEL.eval()
    print("βœ… Generator System loaded successfully.")
    
    print("\n--- All models loaded! Gradio app is ready. ---\n")

except Exception as e:
    print(f"πŸ’₯ FATAL ERROR during model loading: {e}")
    raise gr.Error(f"A required model or file could not be loaded. Please check your repository file structure and paths. Error details: {e}")

# --------------------------------------------------------------------------
# SECTION 3: WRAPPER FUNCTIONS FOR GRADIO UI
# --------------------------------------------------------------------------

def predict_peptide_wrapper(sequence_str):
    if not sequence_str or not isinstance(sequence_str, str) or any(c not in AMINO_ACIDS for c in sequence_str.upper()):
        return "0.0000", "Error: Please enter a valid peptide sequence using standard amino acids."
    
    try:
        features = extract_features(sequence_str.upper(), VALIDATOR_EXTRACTOR, L_fixed=29, d_model_pe=16)
        scaled_features = VALIDATOR_SCALER.transform(features.reshape(1, -1))
        
        with torch.no_grad():
            features_tensor = torch.tensor(scaled_features, dtype=torch.float32).to(DEVICE)
            logits = PREDICTOR_MODEL(features_tensor)
            probability = torch.sigmoid(logits).squeeze().item()
        
        classification = "Antioxidant" if probability >= 0.5 else "Non-Antioxidant"
        return f"{probability:.4f}", classification

    except Exception as e:
        print(f"Prediction Error for sequence '{sequence_str}': {e}")
        return "N/A", f"An error occurred during prediction: {e}"

def generate_peptide_wrapper(num_to_generate, min_len, max_len, temperature, diversity_factor, progress=gr.Progress()):
    num_to_generate = int(num_to_generate)
    min_len = int(min_len)
    max_len = int(max_len)

    if min_len > max_len:
        gr.Warning("Minimum Length cannot be greater than Maximum Length. Adjusting min_len = max_len.")
        min_len = max_len
    
    try:
        validated_pool = {}
        attempts = 0
        max_attempts = 20
        generation_batch_size = 10

        while len(validated_pool) < num_to_generate and attempts < max_attempts:
            progress(len(validated_pool) / num_to_generate, desc=f"Found {len(validated_pool)} / {num_to_generate} peptides. (Attempt {attempts+1}/{max_attempts})")

            with torch.no_grad():
                generated_tokens = GENERATOR_MODEL.sample(
                    batch_size=generation_batch_size, max_length=max_len, device=DEVICE,
                    temperature=temperature, min_decoded_length=min_len
                )
            decoded_sequences = GENERATOR_MODEL.decode(generated_tokens)
            
            new_candidates = []
            for seq in decoded_sequences:
                if min_len <= len(seq) <= max_len:
                    if seq not in validated_pool:
                        new_candidates.append(seq)
            
            for seq in new_candidates:
                prob_str, _ = predict_peptide_wrapper(seq)
                try:
                    prob = float(prob_str)
                    if prob > 0.90:
                        validated_pool[seq] = prob
                        if len(validated_pool) >= num_to_generate:
                            break 
                except (ValueError, TypeError):
                    continue
            
            attempts += 1
            if len(validated_pool) >= num_to_generate:
                break 
        
        progress(1.0, desc=f"Collected {len(validated_pool)} high-quality peptides. Clustering for diversity...")
        time.sleep(1)

        if not validated_pool:
            return pd.DataFrame([{"Sequence": "Could not generate any high-activity peptides (>0.9 prob) with current settings.", "Predicted Probability": "N/A"}])
        
        high_quality_sequences = list(validated_pool.keys())
        final_diverse_seqs = cluster_sequences(GENERATOR_MODEL, high_quality_sequences, num_to_generate, DEVICE)
        
        final_results = [(seq, f"{validated_pool[seq]:.4f}") for seq in final_diverse_seqs]
        final_results.sort(key=lambda x: float(x[1]), reverse=True)
        
        return pd.DataFrame(final_results, columns=["Sequence", "Predicted Probability"])

    except Exception as e:
        print(f"Generation Pipeline Error: {e}")
        return pd.DataFrame([{"Sequence": f"An error occurred during generation: {e}", "Predicted Probability": "N/A"}])

# --------------------------------------------------------------------------
# SECTION 4: GRADIO UI CONSTRUCTION (Unchanged)
# --------------------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="RLAnOxPeptide") as demo:
    gr.Markdown("# RLAnOxPeptide: Intelligent Peptide Design and Prediction")
    gr.Markdown("An integrated framework combining reinforcement learning and a Transformer model for the efficient prediction and innovative design of antioxidant peptides.")

    with gr.Tabs():
        # --- PREDICTION TAB ---
        with gr.TabItem("Peptide Activity Predictor"):
            gr.Markdown("### Enter an amino acid sequence to predict its antioxidant activity.")
            with gr.Row():
                peptide_input = gr.Textbox(label="Peptide Sequence", placeholder="e.g., WHYHDYKY", scale=3)
                predict_button = gr.Button("Predict", variant="primary", scale=1)
            with gr.Row():
                probability_output = gr.Textbox(label="Predicted Probability", interactive=False)
                class_output = gr.Textbox(label="Predicted Class", interactive=False)
            
            predict_button.click(
                fn=predict_peptide_wrapper,
                inputs=peptide_input,
                outputs=[probability_output, class_output]
            )
            gr.Examples(
                examples=[["WHYHDYKY"], ["YPGG"], ["LVLHEHGGN"], ["WKYG"]],
                inputs=peptide_input,
                fn=predict_peptide_wrapper,
                outputs=[probability_output, class_output],
                cache_examples=True
            )

        # --- GENERATION TAB ---
        with gr.TabItem("Novel Sequence Generator"):
            gr.Markdown("### Set parameters to generate novel, high-activity antioxidant peptides.")
            with gr.Column():
                with gr.Row():
                    num_input = gr.Slider(minimum=1, maximum=10, value=10, step=1, label="Number of Final Peptides to Generate")
                    min_len_input = gr.Slider(minimum=2, maximum=20, value=3, step=1, label="Minimum Length")
                    max_len_input = gr.Slider(minimum=2, maximum=20, value=20, step=1, label="Maximum Length")
                with gr.Row():
                    temp_input = gr.Slider(minimum=0.5, maximum=3.0, value=2.5, step=0.1, label="Temperature (Higher = More random)")
                    diversity_input = gr.Slider(minimum=1.1, maximum=5.0, value=1.5, step=0.1, label="Diversity Factor (Larger initial pool for clustering)")
            
            generate_button = gr.Button("Generate Peptides", variant="primary")
            results_output = gr.DataFrame(headers=["Sequence", "Predicted Probability"], label="Generated & Validated Peptides (>90% Probability)", wrap=True)

            def update_min_len_range(max_len):
                return gr.Slider(maximum=max_len)
            max_len_input.change(fn=update_min_len_range, inputs=max_len_input, outputs=max_len_input)

            def update_max_len_range(min_len):
                return gr.Slider(minimum=min_len)
            min_len_input.change(fn=update_max_len_range, inputs=min_len_input, outputs=max_len_input)

            generate_button.click(
                fn=generate_peptide_wrapper,
                inputs=[num_input, min_len_input, max_len_input, temp_input, diversity_input],
                outputs=results_output
            )

if __name__ == "__main__":
    demo.launch()