Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -71,7 +71,7 @@ class AntioxidantPredictor(nn.Module):
|
|
71 |
self.handcrafted_dim = input_dim - self.prott5_dim
|
72 |
self.seq_len = 16
|
73 |
self.prott5_feature_dim = 64
|
74 |
-
encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first
|
75 |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
|
76 |
fused_dim = self.prott5_feature_dim + self.handcrafted_dim
|
77 |
self.fusion_fc = nn.Sequential(nn.Linear(fused_dim, 1024), nn.ReLU(), nn.Dropout(0.3), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.3))
|
|
|
71 |
self.handcrafted_dim = input_dim - self.prott5_dim
|
72 |
self.seq_len = 16
|
73 |
self.prott5_feature_dim = 64
|
74 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=True)
|
75 |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
|
76 |
fused_dim = self.prott5_feature_dim + self.handcrafted_dim
|
77 |
self.fusion_fc = nn.Sequential(nn.Linear(fused_dim, 1024), nn.ReLU(), nn.Dropout(0.3), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.3))
|