Spaces:
Runtime error
Runtime error
| from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
| from langchain.llms import OpenAI | |
| from langchain.chains import RetrievalQA | |
| from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, BSHTMLLoader, UnstructuredImageLoader | |
| # Import things that are needed generically | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.agents import initialize_agent, Tool | |
| from langchain.agents import AgentType | |
| from langchain import LLMMathChain | |
| #setting a memory for conversations | |
| import panel as pn | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| memory = ConversationBufferMemory(memory_key="chat_history") | |
| def qa_agent(file, query, chain_type, k): | |
| """_summary_ | |
| Args: | |
| file (_type_): _description_ | |
| query (_type_): _description_ | |
| chain_type (_type_): _description_ | |
| k (_type_): _description_ | |
| Returns: | |
| _type_: _description_ | |
| """ | |
| llm = OpenAI(temperature=0) | |
| llm_math_chain = LLMMathChain(llm=OpenAI(temperature=0)) | |
| # load document | |
| if file.endswith('pdf'): | |
| loader = PyPDFLoader(file) | |
| elif file.endswith('docx'): | |
| loader = Docx2txtLoader(file) | |
| elif file.endswith('jpg') or file.endswith('jpg'): | |
| loader = UnstructuredImageLoader(file, mode="elements") | |
| else: | |
| raise ValueError | |
| documents = loader.load() | |
| # split the documents into chunks | |
| text_splitter = CharacterTextSplitter(chunk_size=3228, chunk_overlap=0) | |
| texts = text_splitter.split_documents(documents) | |
| # select which embeddings we want to use | |
| embeddings = OpenAIEmbeddings() | |
| # create the vectorestore to use as the index | |
| db = Chroma.from_documents(texts, embeddings) | |
| # expose this index in a retriever interface | |
| retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k}) | |
| # create a chain to answer questions | |
| qa = RetrievalQA.from_chain_type( | |
| llm=llm, chain_type=chain_type, retriever=retriever) | |
| '--------------------------------- CREATE AGENT ---------------------------------' | |
| tools = [ | |
| Tool( | |
| name = "Demo", | |
| func=qa.run, | |
| description="use this as the primary source of context information when you are asked the question. \ | |
| Always search for the answers using only the provided tool, don't make up answers yourself" | |
| ), | |
| Tool( | |
| name="Calculator", | |
| func=llm_math_chain.run, | |
| description="Useful for answering math-related questions within the given document. Avoid speculating beyond the document's content. If you don't know the answer to a question, simply state 'I don't know'.", | |
| return_direct=True #return tool directly to the user | |
| ) | |
| ] | |
| # Construct the agent. We will use the default agent type here. | |
| # See documentation for a full list of options. | |
| agent = initialize_agent( | |
| tools, | |
| agent= AgentType.ZERO_SHOT_REACT_DESCRIPTION, | |
| llm=llm, | |
| memory=memory, | |
| verbose=True, | |
| ) | |
| result = agent.run(input = query) | |
| return result | |
| #'Explain what the proposed Approach in this Paper is all about' | |
| '------------------------------ Panel App ---------------------------------' | |
| pn.extension('texteditor', template="bootstrap", sizing_mode='stretch_width',theme='dark' ) | |
| pn.state.template.param.update( | |
| main_max_width="690px", | |
| header_background="blue", | |
| title='DocumentAgent Application' | |
| ) | |
| #######Widget########### | |
| file_input = pn.widgets.FileInput(width=300) | |
| openaikey = pn.widgets.PasswordInput( | |
| value="", placeholder="Enter your OpenAI API Key here...", width=300 | |
| ) | |
| prompt = pn.widgets.TextEditor( | |
| value="", placeholder="Enter your questions here...", height=160, toolbar=False | |
| ) | |
| run_button = pn.widgets.Button(name="Run!", margin=(25, 50), background='#f0f0f0', button_type='primary') | |
| select_k = pn.widgets.IntSlider( | |
| name="Number of relevant chunks", start=1, end=5, step=1, value=2 | |
| ) | |
| select_chain_type = pn.widgets.RadioButtonGroup( | |
| name='Chain type', | |
| options=['stuff', 'map_reduce', "refine", "map_rerank"],button_type='success' | |
| ) | |
| widgets = pn.Row( | |
| pn.Column(prompt, run_button, margin=5), | |
| pn.Card( | |
| "Chain type:", | |
| pn.Column(select_chain_type, select_k), | |
| title="Advanced settings", margin=10 | |
| ), width=600 | |
| ) | |
| convos = [] # store all panel objects in a list | |
| def agent_app(_): | |
| os.environ["OPENAI_API_KEY"] = openaikey.value | |
| # save pdf file to a temp file | |
| if file_input.value is not None: | |
| file_input.save(f"/.cache/{file_input.filename}") | |
| prompt_text = prompt.value | |
| if prompt_text: | |
| result = qa_agent(file=f"/.cache/{file_input.filename}", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value) | |
| convos.extend([ | |
| pn.Row( | |
| pn.panel("\U0001F60A", width=10), | |
| prompt_text, | |
| width=600 | |
| ), | |
| pn.Row( | |
| pn.panel("\U0001F916", width=10), | |
| pn.Column( | |
| "Relevant source text:", | |
| pn.pane.Markdown(result) | |
| ) | |
| ) | |
| ]) | |
| #return convos | |
| return pn.Column(*convos, margin=15, width=575, min_height=400) | |
| qa_interactive = pn.panel( | |
| pn.bind(agent_app, run_button), | |
| loading_indicator=True, | |
| ) | |
| output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=630, scroll=True) | |
| # Apply CSS styles to the WidgetBox | |
| output.background = 'blue' | |
| # layout | |
| pn.Column( | |
| pn.pane.Markdown(""" | |
| ## \U0001F60A! Question Answering Agent with your Document file | |
| 1) Upload a Document in [pdf, docx, .jpg, html] format. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click "Run". | |
| """), | |
| pn.Row(file_input,openaikey), | |
| output, | |
| widgets, | |
| css_classes=['body']).servable() | |