Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,246 Bytes
fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b f7864bb fa4c65b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import os
import time
from PIL import Image
from typing import List, Tuple, Optional, Union
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import torch
import torchvision.transforms as transforms
from accelerate.utils import set_seed
from src import (
FontDiffuserDPMPipeline,
FontDiffuserModelDPM,
build_ddpm_scheduler,
build_unet,
build_content_encoder,
build_style_encoder,
)
from utils import (
ttf2im,
load_ttf,
is_char_in_font,
save_args_to_yaml,
save_single_image,
save_image_with_content_style,
)
class BatchProcessor:
"""Handles batch processing logic for FontDiffuser"""
def __init__(self, args):
self.args = args
self.device = args.device
self.max_batch_size = getattr(args, "max_batch_size", 8)
self.num_workers = getattr(args, "num_workers", 4)
def batch_image_process(
self,
content_inputs: List[Union[str, Image.Image]],
style_inputs: List[Union[str, Image.Image]],
content_characters: Optional[List[str]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, List[Optional[Image.Image]]]:
"""
Process multiple images in batch
Args:
content_inputs: List of content image paths or PIL Images
style_inputs: List of style image paths or PIL Images
content_characters: List of characters if using character input mode
Returns:
Tuple of (content_tensors, style_tensors, content_pil_images)
"""
batch_size = len(content_inputs)
assert len(style_inputs) == batch_size, (
"Content and style inputs must have same length"
)
if content_characters:
assert len(content_characters) == batch_size, (
"Content characters must match batch size"
)
# Transform setup
content_inference_transforms = transforms.Compose(
[
transforms.Resize(
self.args.content_image_size,
interpolation=transforms.InterpolationMode.BILINEAR,
),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
style_inference_transforms = transforms.Compose(
[
transforms.Resize(
self.args.style_image_size,
interpolation=transforms.InterpolationMode.BILINEAR,
),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
# Initialize ordered lists for results
content_tensors = [None] * batch_size
style_tensors = [None] * batch_size
content_pil_images = [None] * batch_size
# Process in parallel using ThreadPoolExecutor for I/O operations
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
# Submit content processing tasks
content_futures = []
for i, content_input in enumerate(content_inputs):
if content_characters and i < len(content_characters):
future = executor.submit(
self._process_content_character,
content_characters[i],
content_inference_transforms,
)
else:
future = executor.submit(
self._process_content_image,
content_input,
content_inference_transforms,
)
content_futures.append((i, future))
# Submit style processing tasks
style_futures = []
for i, style_input in enumerate(style_inputs):
future = executor.submit(
self._process_style_image, style_input, style_inference_transforms
)
style_futures.append((i, future))
# Collect results in order
for i, future in content_futures:
try:
content_tensor, content_pil = future.result()
if content_tensor is not None:
content_tensors[i] = content_tensor
content_pil_images[i] = content_pil
except Exception as e:
print(f"Error processing content at index {i}: {e}")
continue
for i, future in style_futures:
try:
style_tensor = future.result()
if style_tensor is not None:
style_tensors[i] = style_tensor
except Exception as e:
print(f"Error processing style at index {i}: {e}")
continue
# Filter out None values and stack tensors
content_tensors = [t for t in content_tensors if t is not None]
style_tensors = [t for t in style_tensors if t is not None]
content_pil_images = [img for img in content_pil_images if img is not None]
if content_tensors and style_tensors:
content_batch = torch.stack(content_tensors)
style_batch = torch.stack(style_tensors)
return content_batch, style_batch, content_pil_images
else:
return None, None, []
def _process_content_character(
self, character: str, transform
) -> Tuple[Optional[torch.Tensor], Optional[Image.Image]]:
"""Process content character into tensor"""
if not is_char_in_font(font_path=self.args.ttf_path, char=character):
print(f"Character '{character}' not found in font")
return None, None
font = load_ttf(ttf_path=self.args.ttf_path)
content_image = ttf2im(font=font, char=character)
content_image_pil = content_image.copy()
content_tensor = transform(content_image)
return content_tensor, content_image_pil
def _process_content_image(
self, image_input: Union[str, Image.Image], transform
) -> Tuple[Optional[torch.Tensor], None]:
"""Process content image into tensor"""
try:
if isinstance(image_input, str):
content_image = Image.open(image_input).convert("RGB")
else:
content_image = image_input.convert("RGB")
content_tensor = transform(content_image)
return content_tensor, None
except Exception as e:
print(f"Error processing content image: {e}")
return None, None
def _process_style_image(
self, image_input: Union[str, Image.Image], transform
) -> Optional[torch.Tensor]:
"""Process style image into tensor"""
try:
if isinstance(image_input, str):
style_image = Image.open(image_input).convert("RGB")
else:
style_image = image_input.convert("RGB")
style_tensor = transform(style_image)
return style_tensor
except Exception as e:
print(f"Error processing style image: {e}")
return None
def arg_parse():
from configs.fontdiffuser import get_parser
parser = get_parser()
parser.add_argument("--ckpt_dir", type=str, default=None)
parser.add_argument("--demo", action="store_true")
parser.add_argument(
"--controlnet",
type=bool,
default=False,
help="If in demo mode, the controlnet can be added.",
)
parser.add_argument("--character_input", action="store_true")
parser.add_argument("--content_character", type=str, default=None)
parser.add_argument("--content_image_path", type=str, default=None)
parser.add_argument("--style_image_path", type=str, default=None)
parser.add_argument("--save_image", action="store_true")
parser.add_argument(
"--save_image_dir", type=str, default=None, help="The saving directory."
)
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--ttf_path", type=str, default="ttf/KaiXinSongA.ttf")
# Batch processing arguments
parser.add_argument(
"--batch_size",
type=int,
default=4,
help="Batch size for processing multiple images",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=8,
help="Maximum batch size based on GPU memory",
)
parser.add_argument(
"--num_workers",
type=int,
default=4,
help="Number of workers for parallel image loading",
)
parser.add_argument(
"--batch_content_paths",
type=str,
nargs="+",
default=None,
help="List of content image paths for batch processing",
)
parser.add_argument(
"--batch_style_paths",
type=str,
nargs="+",
default=None,
help="List of style image paths for batch processing",
)
parser.add_argument(
"--batch_characters",
type=str,
nargs="+",
default=None,
help="List of characters for batch processing",
)
parser.add_argument(
"--adaptive_batch_size",
action="store_true",
help="Automatically adjust batch size based on GPU memory",
)
args = parser.parse_args()
style_image_size = args.style_image_size
content_image_size = args.content_image_size
args.style_image_size = (style_image_size, style_image_size)
args.content_image_size = (content_image_size, content_image_size)
return args
def get_optimal_batch_size(args) -> int:
"""Determine optimal batch size based on GPU memory"""
if not torch.cuda.is_available():
return 1
# Get GPU memory info
gpu_memory = torch.cuda.get_device_properties(args.device).total_memory / (
1024**3
) # GB
# Estimate batch size based on GPU memory (rough heuristic)
if gpu_memory >= 24: # RTX 4090, A100, etc.
optimal_batch = min(16, args.max_batch_size)
elif gpu_memory >= 12: # RTX 3080 Ti, RTX 4070 Ti, etc.
optimal_batch = min(8, args.max_batch_size)
elif gpu_memory >= 8: # RTX 3070, RTX 4060 Ti, etc.
optimal_batch = min(4, args.max_batch_size)
else: # Lower end GPUs
optimal_batch = min(2, args.max_batch_size)
return optimal_batch
def load_fontdiffuer_pipeline(args):
"""Load FontDiffuser pipeline (unchanged from original)"""
# Load the model state_dict
unet = build_unet(args=args)
unet.load_state_dict(torch.load(f"{args.ckpt_dir}/unet.pth"))
style_encoder = build_style_encoder(args=args)
style_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/style_encoder.pth"))
content_encoder = build_content_encoder(args=args)
content_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/content_encoder.pth"))
model = FontDiffuserModelDPM(
unet=unet, style_encoder=style_encoder, content_encoder=content_encoder
)
model.to(args.device)
print("Loaded the model state_dict successfully!")
# Load the training ddpm_scheduler.
train_scheduler = build_ddpm_scheduler(args=args)
print("Loaded training DDPM scheduler sucessfully!")
# Load the DPM_Solver to generate the sample.
pipe = FontDiffuserDPMPipeline(
model=model,
ddpm_train_scheduler=train_scheduler,
model_type=args.model_type,
guidance_type=args.guidance_type,
guidance_scale=args.guidance_scale,
)
print("Loaded dpm_solver pipeline sucessfully!")
return pipe
def batch_sampling(
args,
pipe,
content_inputs: List[Union[str, Image.Image]],
style_inputs: List[Union[str, Image.Image]],
content_characters: Optional[List[str]] = None,
) -> List[Image.Image]:
"""
Perform batch sampling with FontDiffuser
Args:
args: Arguments
pipe: FontDiffuser pipeline
content_inputs: List of content images/paths
style_inputs: List of style images/paths
content_characters: List of characters (if using character input)
Returns:
List of generated images
"""
if not args.demo:
os.makedirs(args.save_image_dir, exist_ok=True)
save_args_to_yaml(
args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml"
)
if args.seed:
set_seed(seed=args.seed)
# Determine optimal batch size
if args.adaptive_batch_size:
optimal_batch_size = get_optimal_batch_size(args)
print(f"Using adaptive batch size: {optimal_batch_size}")
else:
optimal_batch_size = args.batch_size
batch_processor = BatchProcessor(args)
total_samples = len(content_inputs)
all_generated_images = []
print(f"Processing {total_samples} samples in batches of {optimal_batch_size}")
# Process in batches
for batch_start in range(0, total_samples, optimal_batch_size):
batch_end = min(batch_start + optimal_batch_size, total_samples)
batch_content = content_inputs[batch_start:batch_end]
batch_style = style_inputs[batch_start:batch_end]
batch_chars = (
content_characters[batch_start:batch_end] if content_characters else None
)
print(
f"Processing batch {batch_start // optimal_batch_size + 1}/{(total_samples + optimal_batch_size - 1) // optimal_batch_size}"
)
# Process batch
content_batch, style_batch, content_pil_images = (
batch_processor.batch_image_process(batch_content, batch_style, batch_chars)
)
if content_batch is None or style_batch is None:
print("Skipping batch due to processing errors")
continue
current_batch_size = content_batch.shape[0]
with torch.no_grad():
content_batch = content_batch.to(args.device)
style_batch = style_batch.to(args.device)
print(f"Generating {current_batch_size} images with DPM-Solver++...")
start_time = time.time()
try:
# Generate batch
images = pipe.generate(
content_images=content_batch,
style_images=style_batch,
batch_size=current_batch_size,
order=args.order,
num_inference_step=args.num_inference_steps,
content_encoder_downsample_size=args.content_encoder_downsample_size,
t_start=args.t_start,
t_end=args.t_end,
dm_size=args.content_image_size,
algorithm_type=args.algorithm_type,
skip_type=args.skip_type,
method=args.method,
correcting_x0_fn=args.correcting_x0_fn,
)
end_time = time.time()
print(f"Batch generation completed in {end_time - start_time:.2f}s")
# Save images if requested
if args.save_image:
save_batch_images(
args,
images,
content_pil_images,
batch_content,
batch_style,
batch_start,
)
all_generated_images.extend(images)
except RuntimeError as e:
if "out of memory" in str(e).lower():
print(
f"GPU out of memory with batch size {current_batch_size}, trying smaller batch..."
)
torch.cuda.empty_cache()
# Retry with smaller batch
smaller_batch_size = max(1, current_batch_size // 2)
for sub_batch_start in range(
0, current_batch_size, smaller_batch_size
):
sub_batch_end = min(
sub_batch_start + smaller_batch_size, current_batch_size
)
sub_content = content_batch[sub_batch_start:sub_batch_end]
sub_style = style_batch[sub_batch_start:sub_batch_end]
sub_images = pipe.generate(
content_images=sub_content,
style_images=sub_style,
batch_size=sub_batch_end - sub_batch_start,
order=args.order,
num_inference_step=args.num_inference_steps,
content_encoder_downsample_size=args.content_encoder_downsample_size,
t_start=args.t_start,
t_end=args.t_end,
dm_size=args.content_image_size,
algorithm_type=args.algorithm_type,
skip_type=args.skip_type,
method=args.method,
correcting_x0_fn=args.correcting_x0_fn,
)
all_generated_images.extend(sub_images)
else:
print(f"Error during generation: {e}")
continue
# Clear GPU cache between batches
torch.cuda.empty_cache()
print(f"Batch processing completed! Generated {len(all_generated_images)} images.")
return all_generated_images
def save_batch_images(
args, images, content_pil_images, batch_content, batch_style, batch_offset
):
"""Save batch of generated images"""
for i, image in enumerate(images):
# Create unique filename for each image
image_idx = batch_offset + i
save_single_image(
save_dir=args.save_image_dir, image=image, suffix=f"_{image_idx:04d}"
)
# Save with content and style context if available
if args.character_input and i < len(content_pil_images):
save_image_with_content_style(
save_dir=args.save_image_dir,
image=image,
content_image_pil=content_pil_images[i],
content_image_path=None,
style_image_path=batch_style[i]
if isinstance(batch_style[i], str)
else None,
resolution=args.resolution,
suffix=f"_{image_idx:04d}",
)
elif not args.character_input:
save_image_with_content_style(
save_dir=args.save_image_dir,
image=image,
content_image_pil=None,
content_image_path=batch_content[i]
if isinstance(batch_content[i], str)
else None,
style_image_path=batch_style[i]
if isinstance(batch_style[i], str)
else None,
resolution=args.resolution,
suffix=f"_{image_idx:04d}",
)
def sampling(args, pipe, content_image=None, style_image=None):
"""Original single image sampling function (for backward compatibility)"""
if not args.demo:
os.makedirs(args.save_image_dir, exist_ok=True)
save_args_to_yaml(
args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml"
)
if args.seed:
set_seed(seed=args.seed)
# Use single image processing
if args.character_input:
content_inputs = (
[args.content_character] if hasattr(args, "content_character") else ["A"]
)
style_inputs = [style_image or args.style_image_path]
result = batch_sampling(args, pipe, [], style_inputs, content_inputs)
else:
content_inputs = [content_image or args.content_image_path]
style_inputs = [style_image or args.style_image_path]
result = batch_sampling(args, pipe, content_inputs, style_inputs)
return result[0] if result else None
# Additional utility functions for batch processing
def load_images_from_directory(
directory_path: str, extensions: List[str] = [".jpg", ".jpeg", ".png", ".bmp"]
) -> List[str]:
"""Load all image paths from a directory"""
directory = Path(directory_path)
image_paths = []
for ext in extensions:
image_paths.extend(directory.glob(f"*{ext}"))
image_paths.extend(directory.glob(f"*{ext.upper()}"))
return [str(path) for path in sorted(image_paths)]
def create_batch_from_config(
config_file: str,
) -> Tuple[List[str], List[str], List[str]]:
"""Create batch inputs from configuration file"""
import json
with open(config_file, "r") as f:
config = json.load(f)
content_inputs = config.get("content_images", [])
style_inputs = config.get("style_images", [])
characters = config.get("characters", [])
return content_inputs, style_inputs, characters
if __name__ == "__main__":
args = arg_parse()
# Load fontdiffuser pipeline
pipe = load_fontdiffuer_pipeline(args=args)
# Check if batch processing is requested
if args.batch_content_paths or args.batch_style_paths or args.batch_characters:
# Batch processing mode
content_inputs = args.batch_content_paths or []
style_inputs = args.batch_style_paths or []
characters = args.batch_characters or None
if characters and args.character_input:
# Character-based batch processing
style_inputs = style_inputs or [args.style_image_path] * len(characters)
generated_images = batch_sampling(args, pipe, [], style_inputs, characters)
else:
# Image-based batch processing
if len(content_inputs) != len(style_inputs):
print("Error: Number of content and style images must match")
exit(1)
generated_images = batch_sampling(args, pipe, content_inputs, style_inputs)
print(f"Batch processing completed! Generated {len(generated_images)} images.")
else:
# Single image processing (original behavior)
out_image = sampling(args=args, pipe=pipe)
|