Spaces:
Sleeping
Sleeping
File size: 7,299 Bytes
bc42626 679b404 7a7d2bf bc42626 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf 679b404 7a7d2bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Set page config
st.set_page_config(page_title="ML Models Comparison Dashboard", layout="wide")
# Title and description
st.title("Machine Learning Models Comparison Dashboard")
st.write("Compare performance metrics of different ML models on the CIFAR-10 dataset")
# Pre-computed metrics
results = {
'Accuracy': {
'KNN': 0.331,
'Logistic Regression': 0.368,
'Random Forest': 0.466,
'Naive Bayes': 0.298,
'K-Means': 0.109,
'CNN': 0.694
},
'Precision': {
'KNN': 0.342,
'Logistic Regression': 0.387,
'Random Forest': 0.409,
'Naive Bayes': 0.295,
'K-Means': 0.271,
'CNN': 0.453
},
'Recall': {
'KNN': 0.345,
'Logistic Regression': 0.389,
'Random Forest': 0.412,
'Naive Bayes': 0.298,
'K-Means': 0.275,
'CNN': 0.456
},
'F1': {
'KNN': 0.343,
'Logistic Regression': 0.388,
'Random Forest': 0.410,
'Naive Bayes': 0.296,
'K-Means': 0.273,
'CNN': 0.454
}
}
# Confusion matrices data
confusion_matrices = {
'CNN': np.array([
[672, 27, 78, 21, 21, 3, 3, 13, 116, 46],
[20, 807, 3, 15, 8, 2, 7, 1, 22, 115],
[54, 4, 593, 82, 144, 36, 28, 32, 18, 9],
[17, 8, 73, 586, 100, 108, 38, 34, 12, 24],
[19, 0, 53, 69, 720, 14, 15, 90, 15, 5],
[5, 3, 89, 300, 58, 458, 6, 64, 9, 8],
[3, 9, 55, 122, 118, 13, 653, 6, 7, 14],
[17, 3, 30, 74, 70, 36, 0, 754, 1, 15],
[41, 24, 11, 20, 9, 3, 6, 8, 844, 34],
[20, 51, 4, 22, 9, 3, 6, 12, 25, 848]
]),
'K-Means': np.array([
[106, 109, 62, 41, 139, 81, 33, 185, 211, 33],
[97, 184, 92, 141, 96, 159, 106, 25, 42, 58],
[54, 69, 252, 160, 42, 46, 120, 109, 84, 64],
[83, 120, 146, 154, 18, 60, 121, 87, 61, 150],
[39, 49, 245, 219, 19, 51, 117, 73, 20, 168],
[72, 185, 163, 103, 30, 35, 88, 132, 38, 154],
[86, 94, 211, 212, 11, 28, 206, 30, 39, 83],
[111, 88, 205, 131, 54, 135, 58, 57, 22, 139],
[31, 167, 46, 28, 328, 195, 33, 91, 39, 42],
[131, 81, 83, 123, 141, 331, 19, 18, 37, 36]
]),
'KNN': np.array([
[565, 12, 107, 20, 52, 6, 25, 4, 205, 4],
[195, 244, 121, 61, 120, 28, 31, 4, 178, 18],
[150, 7, 463, 58, 201, 24, 48, 10, 39, 0],
[108, 10, 279, 243, 133, 92, 80, 17, 32, 6],
[100, 6, 282, 54, 443, 23, 38, 11, 43, 0],
[89, 4, 254, 178, 143, 208, 68, 10, 41, 5],
[49, 1, 317, 102, 260, 24, 227, 2, 18, 0],
[127, 16, 226, 76, 236, 40, 45, 192, 41, 1],
[181, 31, 56, 45, 52, 11, 8, 4, 607, 5],
[192, 81, 127, 80, 117, 27, 41, 14, 205, 116]
]),
'Logistic Regression': np.array([
[424, 51, 58, 50, 25, 41, 17, 56, 202, 76],
[72, 426, 35, 48, 26, 36, 48, 47, 78, 184],
[96, 34, 266, 90, 123, 94, 130, 84, 51, 32],
[43, 52, 115, 235, 72, 194, 131, 56, 43, 59],
[55, 35, 137, 80, 280, 97, 152, 112, 25, 27],
[41, 41, 103, 202, 90, 300, 77, 64, 45, 37],
[14, 47, 97, 147, 94, 94, 417, 42, 23, 25],
[47, 47, 91, 70, 97, 91, 47, 397, 45, 68],
[146, 85, 31, 37, 17, 41, 10, 18, 513, 102],
[78, 180, 26, 36, 30, 29, 45, 59, 98, 419]
]),
'Naive Bayes': np.array([
[494, 20, 39, 10, 84, 34, 50, 9, 200, 60],
[141, 166, 24, 31, 66, 72, 192, 19, 121, 168],
[225, 24, 83, 15, 292, 48, 209, 21, 54, 29],
[163, 36, 54, 76, 151, 129, 262, 26, 34, 69],
[86, 8, 57, 26, 417, 38, 265, 22, 50, 31],
[156, 17, 55, 51, 167, 264, 159, 36, 57, 38],
[106, 2, 60, 18, 228, 46, 467, 15, 19, 39],
[134, 24, 36, 41, 228, 94, 102, 131, 72, 138],
[168, 41, 18, 17, 56, 83, 39, 8, 471, 99],
[144, 67, 17, 20, 48, 32, 101, 23, 141, 407]
]),
'Random Forest': np.array([
[559, 36, 62, 21, 28, 20, 20, 30, 165, 59],
[29, 544, 10, 38, 22, 34, 45, 35, 67, 176],
[100, 36, 337, 79, 137, 69, 123, 54, 34, 31],
[53, 46, 76, 282, 88, 173, 132, 62, 23, 65],
[54, 21, 139, 60, 381, 47, 158, 91, 27, 22],
[32, 27, 89, 167, 74, 400, 77, 74, 27, 33],
[11, 33, 87, 78, 99, 53, 567, 31, 6, 35],
[47, 44, 53, 58, 104, 83, 38, 451, 24, 98],
[90, 83, 19, 33, 15, 39, 7, 22, 615, 77],
[50, 176, 18, 38, 20, 24, 27, 43, 80, 524]
])
}
# Create tabs for different visualizations
tab1, tab2, tab3 = st.tabs(["Overall Performance", "Confusion Matrices", "Individual Metrics"])
with tab1:
st.header("Overall Model Performance")
# Create bar plot for overall accuracy
fig, ax = plt.subplots(figsize=(12, 6))
models = list(results['Accuracy'].keys())
accuracies = list(results['Accuracy'].values())
colors = ['purple', 'navy', 'teal', 'green', 'lime', 'yellow']
bars = ax.bar(models, accuracies, color=colors)
# Customize the plot
ax.set_title('Overall Model Performance Comparison')
ax.set_xlabel('Models')
ax.set_ylabel('Accuracy')
plt.xticks(rotation=45)
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.3f}',
ha='center', va='bottom')
plt.tight_layout()
st.pyplot(fig)
with tab2:
st.header("Confusion Matrices")
# Model selection for confusion matrix
selected_model = st.selectbox("Select Model", list(confusion_matrices.keys()))
# Create confusion matrix plot using seaborn
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(confusion_matrices[selected_model],
annot=True,
fmt='d',
cmap='Blues',
ax=ax)
plt.title(f'Confusion Matrix - {selected_model}')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.tight_layout()
st.pyplot(fig)
with tab3:
st.header("Individual Metrics")
col1, col2, col3 = st.columns(3)
metrics = ['Precision', 'Recall', 'F1']
for metric, col in zip(metrics, [col1, col2, col3]):
with col:
fig, ax = plt.subplots(figsize=(8, 6))
models = list(results[metric].keys())
values = list(results[metric].values())
ax.bar(models, values)
ax.set_title(f'Comparison of {metric}')
plt.xticks(rotation=45, ha='right')
ax.set_ylabel(metric)
plt.tight_layout()
st.pyplot(fig)
# Add metrics table to sidebar
st.sidebar.header("Metrics Table")
df_metrics = pd.DataFrame(results)
st.sidebar.dataframe(df_metrics.style.format("{:.3f}"))
# Add download button
@st.cache_data
def convert_df_to_csv():
return df_metrics.to_csv()
csv = convert_df_to_csv()
st.sidebar.download_button(
label="Download metrics as CSV",
data=csv,
file_name='model_metrics.csv',
mime='text/csv',
)
# Footer
st.markdown("---")
st.markdown("Dashboard created for ML Models Comparison on CIFAR-10 dataset") |