File size: 7,299 Bytes
bc42626
679b404
 
 
7a7d2bf
 
bc42626
679b404
 
 
 
 
 
 
7a7d2bf
679b404
 
7a7d2bf
 
 
679b404
7a7d2bf
 
679b404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7d2bf
679b404
7a7d2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679b404
 
 
7a7d2bf
679b404
 
7a7d2bf
 
 
 
 
 
 
 
 
679b404
7a7d2bf
 
 
 
 
679b404
7a7d2bf
 
 
 
 
 
679b404
7a7d2bf
 
679b404
 
 
 
7a7d2bf
679b404
 
7a7d2bf
 
 
 
 
 
 
679b404
7a7d2bf
 
 
 
679b404
7a7d2bf
 
 
 
679b404
7a7d2bf
 
679b404
7a7d2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679b404
7a7d2bf
679b404
 
7a7d2bf
679b404
 
 
 
 
 
 
 
 
 
 
7a7d2bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Set page config
st.set_page_config(page_title="ML Models Comparison Dashboard", layout="wide")

# Title and description
st.title("Machine Learning Models Comparison Dashboard")
st.write("Compare performance metrics of different ML models on the CIFAR-10 dataset")

# Pre-computed metrics
results = {
    'Accuracy': {
        'KNN': 0.331,
        'Logistic Regression': 0.368,
        'Random Forest': 0.466,
        'Naive Bayes': 0.298,
        'K-Means': 0.109,
        'CNN': 0.694
    },
    'Precision': {
        'KNN': 0.342,
        'Logistic Regression': 0.387,
        'Random Forest': 0.409,
        'Naive Bayes': 0.295,
        'K-Means': 0.271,
        'CNN': 0.453
    },
    'Recall': {
        'KNN': 0.345,
        'Logistic Regression': 0.389,
        'Random Forest': 0.412,
        'Naive Bayes': 0.298,
        'K-Means': 0.275,
        'CNN': 0.456
    },
    'F1': {
        'KNN': 0.343,
        'Logistic Regression': 0.388,
        'Random Forest': 0.410,
        'Naive Bayes': 0.296,
        'K-Means': 0.273,
        'CNN': 0.454
    }
}

# Confusion matrices data
confusion_matrices = {
    'CNN': np.array([
        [672, 27, 78, 21, 21, 3, 3, 13, 116, 46],
        [20, 807, 3, 15, 8, 2, 7, 1, 22, 115],
        [54, 4, 593, 82, 144, 36, 28, 32, 18, 9],
        [17, 8, 73, 586, 100, 108, 38, 34, 12, 24],
        [19, 0, 53, 69, 720, 14, 15, 90, 15, 5],
        [5, 3, 89, 300, 58, 458, 6, 64, 9, 8],
        [3, 9, 55, 122, 118, 13, 653, 6, 7, 14],
        [17, 3, 30, 74, 70, 36, 0, 754, 1, 15],
        [41, 24, 11, 20, 9, 3, 6, 8, 844, 34],
        [20, 51, 4, 22, 9, 3, 6, 12, 25, 848]
    ]),
    'K-Means': np.array([
        [106, 109, 62, 41, 139, 81, 33, 185, 211, 33],
        [97, 184, 92, 141, 96, 159, 106, 25, 42, 58],
        [54, 69, 252, 160, 42, 46, 120, 109, 84, 64],
        [83, 120, 146, 154, 18, 60, 121, 87, 61, 150],
        [39, 49, 245, 219, 19, 51, 117, 73, 20, 168],
        [72, 185, 163, 103, 30, 35, 88, 132, 38, 154],
        [86, 94, 211, 212, 11, 28, 206, 30, 39, 83],
        [111, 88, 205, 131, 54, 135, 58, 57, 22, 139],
        [31, 167, 46, 28, 328, 195, 33, 91, 39, 42],
        [131, 81, 83, 123, 141, 331, 19, 18, 37, 36]
    ]),
    'KNN': np.array([
        [565, 12, 107, 20, 52, 6, 25, 4, 205, 4],
        [195, 244, 121, 61, 120, 28, 31, 4, 178, 18],
        [150, 7, 463, 58, 201, 24, 48, 10, 39, 0],
        [108, 10, 279, 243, 133, 92, 80, 17, 32, 6],
        [100, 6, 282, 54, 443, 23, 38, 11, 43, 0],
        [89, 4, 254, 178, 143, 208, 68, 10, 41, 5],
        [49, 1, 317, 102, 260, 24, 227, 2, 18, 0],
        [127, 16, 226, 76, 236, 40, 45, 192, 41, 1],
        [181, 31, 56, 45, 52, 11, 8, 4, 607, 5],
        [192, 81, 127, 80, 117, 27, 41, 14, 205, 116]
    ]),
    'Logistic Regression': np.array([
        [424, 51, 58, 50, 25, 41, 17, 56, 202, 76],
        [72, 426, 35, 48, 26, 36, 48, 47, 78, 184],
        [96, 34, 266, 90, 123, 94, 130, 84, 51, 32],
        [43, 52, 115, 235, 72, 194, 131, 56, 43, 59],
        [55, 35, 137, 80, 280, 97, 152, 112, 25, 27],
        [41, 41, 103, 202, 90, 300, 77, 64, 45, 37],
        [14, 47, 97, 147, 94, 94, 417, 42, 23, 25],
        [47, 47, 91, 70, 97, 91, 47, 397, 45, 68],
        [146, 85, 31, 37, 17, 41, 10, 18, 513, 102],
        [78, 180, 26, 36, 30, 29, 45, 59, 98, 419]
    ]),
    'Naive Bayes': np.array([
        [494, 20, 39, 10, 84, 34, 50, 9, 200, 60],
        [141, 166, 24, 31, 66, 72, 192, 19, 121, 168],
        [225, 24, 83, 15, 292, 48, 209, 21, 54, 29],
        [163, 36, 54, 76, 151, 129, 262, 26, 34, 69],
        [86, 8, 57, 26, 417, 38, 265, 22, 50, 31],
        [156, 17, 55, 51, 167, 264, 159, 36, 57, 38],
        [106, 2, 60, 18, 228, 46, 467, 15, 19, 39],
        [134, 24, 36, 41, 228, 94, 102, 131, 72, 138],
        [168, 41, 18, 17, 56, 83, 39, 8, 471, 99],
        [144, 67, 17, 20, 48, 32, 101, 23, 141, 407]
    ]),
    'Random Forest': np.array([
        [559, 36, 62, 21, 28, 20, 20, 30, 165, 59],
        [29, 544, 10, 38, 22, 34, 45, 35, 67, 176],
        [100, 36, 337, 79, 137, 69, 123, 54, 34, 31],
        [53, 46, 76, 282, 88, 173, 132, 62, 23, 65],
        [54, 21, 139, 60, 381, 47, 158, 91, 27, 22],
        [32, 27, 89, 167, 74, 400, 77, 74, 27, 33],
        [11, 33, 87, 78, 99, 53, 567, 31, 6, 35],
        [47, 44, 53, 58, 104, 83, 38, 451, 24, 98],
        [90, 83, 19, 33, 15, 39, 7, 22, 615, 77],
        [50, 176, 18, 38, 20, 24, 27, 43, 80, 524]
    ])
}

# Create tabs for different visualizations
tab1, tab2, tab3 = st.tabs(["Overall Performance", "Confusion Matrices", "Individual Metrics"])

with tab1:
    st.header("Overall Model Performance")
    
    # Create bar plot for overall accuracy
    fig, ax = plt.subplots(figsize=(12, 6))
    models = list(results['Accuracy'].keys())
    accuracies = list(results['Accuracy'].values())
    
    colors = ['purple', 'navy', 'teal', 'green', 'lime', 'yellow']
    bars = ax.bar(models, accuracies, color=colors)
    
    # Customize the plot
    ax.set_title('Overall Model Performance Comparison')
    ax.set_xlabel('Models')
    ax.set_ylabel('Accuracy')
    plt.xticks(rotation=45)
    
    # Add value labels on top of bars
    for bar in bars:
        height = bar.get_height()
        ax.text(bar.get_x() + bar.get_width()/2., height,
                f'{height:.3f}',
                ha='center', va='bottom')
    
    plt.tight_layout()
    st.pyplot(fig)

with tab2:
    st.header("Confusion Matrices")
    
    # Model selection for confusion matrix
    selected_model = st.selectbox("Select Model", list(confusion_matrices.keys()))
    
    # Create confusion matrix plot using seaborn
    fig, ax = plt.subplots(figsize=(10, 8))
    sns.heatmap(confusion_matrices[selected_model], 
                annot=True, 
                fmt='d',
                cmap='Blues',
                ax=ax)
    
    plt.title(f'Confusion Matrix - {selected_model}')
    plt.xlabel('Predicted')
    plt.ylabel('True')
    plt.tight_layout()
    
    st.pyplot(fig)

with tab3:
    st.header("Individual Metrics")
    
    col1, col2, col3 = st.columns(3)
    metrics = ['Precision', 'Recall', 'F1']
    
    for metric, col in zip(metrics, [col1, col2, col3]):
        with col:
            fig, ax = plt.subplots(figsize=(8, 6))
            models = list(results[metric].keys())
            values = list(results[metric].values())
            
            ax.bar(models, values)
            ax.set_title(f'Comparison of {metric}')
            plt.xticks(rotation=45, ha='right')
            ax.set_ylabel(metric)
            
            plt.tight_layout()
            st.pyplot(fig)

# Add metrics table to sidebar
st.sidebar.header("Metrics Table")
df_metrics = pd.DataFrame(results)
st.sidebar.dataframe(df_metrics.style.format("{:.3f}"))

# Add download button
@st.cache_data
def convert_df_to_csv():
    return df_metrics.to_csv()

csv = convert_df_to_csv()
st.sidebar.download_button(
    label="Download metrics as CSV",
    data=csv,
    file_name='model_metrics.csv',
    mime='text/csv',
)

# Footer
st.markdown("---")
st.markdown("Dashboard created for ML Models Comparison on CIFAR-10 dataset")