Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,83 @@
|
|
1 |
-
import cv2
|
2 |
-
import gradio as gr
|
3 |
-
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
"
|
12 |
-
|
13 |
-
)
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# Convert to numpy array if it's a PIL Image
|
30 |
-
if isinstance(img, Image.Image):
|
31 |
-
img = np.array(img)
|
32 |
-
|
33 |
-
# Handle base64 image strings
|
34 |
-
elif isinstance(img, str):
|
35 |
-
# Check if it's a base64 data URL
|
36 |
-
if img.startswith('data:image'):
|
37 |
-
# Split and decode base64 part
|
38 |
-
img = img.split(',')[1]
|
39 |
-
|
40 |
-
# Decode base64 to image
|
41 |
-
try:
|
42 |
-
img = Image.open(io.BytesIO(base64.b64decode(img)))
|
43 |
-
img = np.array(img)
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Base64 decoding error: {e}")
|
46 |
-
raise ValueError("Invalid base64 image")
|
47 |
-
|
48 |
-
# Validate numpy array
|
49 |
-
if not isinstance(img, np.ndarray):
|
50 |
-
raise ValueError("Input could not be converted to a valid image")
|
51 |
-
|
52 |
-
# Print initial image details for debugging
|
53 |
-
print(f"Initial image type: {type(img)}, shape: {img.shape}")
|
54 |
-
|
55 |
-
# Handle color channels
|
56 |
-
if img.ndim == 3:
|
57 |
-
if img.shape[-1] == 3: # Color image
|
58 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
59 |
-
elif img.shape[-1] == 4: # RGBA image
|
60 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)
|
61 |
-
|
62 |
-
# Ensure single channel
|
63 |
-
if img.ndim == 2:
|
64 |
-
img = np.expand_dims(img, axis=-1)
|
65 |
-
|
66 |
-
# Resize and normalize
|
67 |
-
img = cv2.resize(img, (img_size, img_size))
|
68 |
-
img = img.astype('float32') / 255.0
|
69 |
-
img = img.reshape(1, img_size, img_size, 1)
|
70 |
-
|
71 |
-
# Print processed image details
|
72 |
-
print(f"Processed image shape: {img.shape}")
|
73 |
-
|
74 |
-
# Get predictions from the model
|
75 |
-
preds = model.predict(img)[0]
|
76 |
-
|
77 |
-
# Print predictions for debugging
|
78 |
-
print("Predictions:", preds)
|
79 |
-
|
80 |
-
# Return predictions as a dictionary
|
81 |
-
return {label: float(pred) for label, pred in zip(labels, preds)}
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
# Comprehensive error logging
|
85 |
-
print(f"Full error during prediction: {e}")
|
86 |
-
return {"Error": str(e)}
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
#
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
interface
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow import keras
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# Load and preprocess the MNIST dataset
|
7 |
+
def load_data():
|
8 |
+
"""Load and preprocess the MNIST dataset."""
|
9 |
+
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
|
10 |
+
X_train = X_train.astype("float32") / 255
|
11 |
+
X_test = X_test.astype("float32") / 255
|
12 |
+
X_train = X_train.reshape(-1, 28, 28, 1)
|
13 |
+
X_test = X_test.reshape(-1, 28, 28, 1)
|
14 |
+
return (X_train, y_train), (X_test, y_test)
|
15 |
|
16 |
+
# Build the CNN model
|
17 |
+
def build_model(input_shape, num_classes):
|
18 |
+
"""Build the CNN model."""
|
19 |
+
inputs = keras.layers.Input(input_shape)
|
20 |
+
x = keras.layers.Conv2D(28, kernel_size=(3, 3), activation='relu')(inputs)
|
21 |
+
x = keras.layers.MaxPooling2D(pool_size=(2, 2))(x)
|
22 |
+
x = keras.layers.Flatten()(x)
|
23 |
+
x = keras.layers.Dense(128, activation='relu')(x)
|
24 |
+
outputs = keras.layers.Dense(num_classes, activation='softmax')(x)
|
25 |
+
return keras.models.Model(inputs=inputs, outputs=outputs)
|
26 |
|
27 |
+
# Preprocess input for prediction
|
28 |
+
def preprocess_image(image):
|
29 |
+
"""Resize and normalize the input image for prediction."""
|
30 |
+
image = np.array(image.convert('L')) # Convert to grayscale
|
31 |
+
image = image.astype("float32") / 255 # Normalize
|
32 |
+
image = image.reshape(1, 28, 28, 1) # Reshape to model's input
|
33 |
+
return image
|
34 |
|
35 |
+
# Predict digit
|
36 |
+
def predict_digit(image):
|
37 |
+
"""Predict the digit in the uploaded image."""
|
38 |
+
processed_image = preprocess_image(image)
|
39 |
+
prediction = model.predict(processed_image)
|
40 |
+
class_id = np.argmax(prediction)
|
41 |
+
confidence = prediction[0][class_id]
|
42 |
+
label = classes_names[class_id]
|
43 |
+
results = {name: float(prediction[0][i]) for i, name in enumerate(classes_names)}
|
44 |
+
return label, results
|
45 |
|
46 |
+
if __name__ == "__main__":
|
47 |
+
# Parameters
|
48 |
+
classes_names = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
49 |
+
input_shape = (28, 28, 1)
|
50 |
+
num_classes = len(classes_names)
|
51 |
|
52 |
+
# Load data
|
53 |
+
(X_train, y_train), (X_test, y_test) = load_data()
|
54 |
|
55 |
+
# Build and train model
|
56 |
+
model = build_model(input_shape, num_classes)
|
57 |
+
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
58 |
+
print("Training model...")
|
59 |
+
model.fit(X_train, y_train, epochs=3, batch_size=64) # Quick training for demonstration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# Gradio Interface
|
62 |
+
title = "Welcome to Your First Sketch Recognition App!"
|
63 |
+
description = (
|
64 |
+
"The robot was trained to classify numbers (from 0 to 9). To test it, draw your number in the space provided."
|
65 |
+
)
|
66 |
+
examples = [["example_image.png"]] # You can add example images here.
|
67 |
|
68 |
+
interface = gr.Interface(
|
69 |
+
fn=predict_digit,
|
70 |
+
inputs=gr.inputs.Image(shape=(28, 28), image_mode="L", invert_colors=True, label="Draw a Digit"),
|
71 |
+
outputs=[
|
72 |
+
gr.outputs.Textbox(label="Predicted Digit"),
|
73 |
+
gr.outputs.Label(num_top_classes=10, label="Prediction Confidence"),
|
74 |
+
],
|
75 |
+
title=title,
|
76 |
+
description=description,
|
77 |
+
examples=examples,
|
78 |
+
live=True,
|
79 |
+
)
|
80 |
|
81 |
+
# Launch Gradio interface
|
82 |
+
print("Launching Gradio interface...")
|
83 |
+
interface.launch()
|