Spaces:
Sleeping
Sleeping
File size: 9,135 Bytes
41683f3 f7d41c0 41683f3 f7d41c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
# Page configuration
st.set_page_config(
page_title="Seattle Weather Analysis",
page_icon="🌦️",
layout="wide"
)
# Title and introduction
st.title("🌦️ Seattle Weather Machine Learning")
st.markdown("""
This dashboard analyzes Seattle weather data using different machine learning models.
The dataset includes weather attributes and their classification.
""")
def get_dataset_overview(df):
"""
Generate a comprehensive overview of the dataset
"""
return {
"Total Records": len(df),
"Features": len(df.columns) - 1, # Excluding target column
"Target Classes": len(df['weather'].unique()),
"Missing Values": df.isnull().sum().sum()
}
def load_data():
"""Load and preprocess the Seattle weather dataset"""
df = pd.read_csv('seattle-weather.csv')
df_cleaned = df.drop(columns=['date'])
weather_mapping = {'drizzle': 0, 'rain': 1, 'sun': 2, 'snow': 3, 'fog': 4}
df_cleaned['weather_encoded'] = df_cleaned['weather'].map(weather_mapping)
# Split features and target
X = df_cleaned.drop(columns=['weather', 'weather_encoded'])
y = df_cleaned['weather_encoded']
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled = pd.DataFrame(X_scaled, columns=X.columns)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
return df, df_cleaned, X, y, X_train, X_test, y_train, y_test, weather_mapping
def plot_weather_distribution(df):
"""Plot distribution of weather types"""
fig, ax = plt.subplots()
sns.countplot(x='weather', data=df, palette='viridis', ax=ax)
ax.set_title("Distribution of Weather Types")
st.pyplot(fig)
def plot_temp_relationship(df):
"""Plot relationship between max and min temperatures"""
fig, ax = plt.subplots()
sns.scatterplot(x='temp_max', y='temp_min', hue='weather', data=df, ax=ax)
ax.set_title("Relationship Between Temp_max and Temp_min")
st.pyplot(fig)
def train_models(X_train, X_test, y_train, y_test):
"""Train Naive Bayes, Decision Tree, and Random Forest models"""
models = {
'Naive Bayes': GaussianNB(),
'Decision Tree': DecisionTreeClassifier(random_state=42, max_depth=5),
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
cv_scores = cross_val_score(model, X_train, y_train, cv=5)
results[name] = {
'model': model,
'accuracy': accuracy,
'cv_mean': cv_scores.mean(),
'cv_std': cv_scores.std(),
'pred': y_pred
}
return results
def plot_confusion_matrix(y_test, y_pred, model_name, weather_mapping):
"""Plot confusion matrix for a given model"""
fig, ax = plt.subplots()
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=list(weather_mapping.keys()),
yticklabels=list(weather_mapping.keys()), ax=ax)
ax.set_title(f"Confusion Matrix - {model_name}")
ax.set_xlabel("Predicted")
ax.set_ylabel("Actual")
st.pyplot(fig)
def plot_feature_importance(model, X, model_name):
"""Plot feature importance for a given model"""
fig, ax = plt.subplots()
feature_importance = pd.DataFrame({
'Feature': X.columns,
'Importance': model.feature_importances_
}).sort_values('Importance', ascending=False)
sns.barplot(x='Importance', y='Feature', data=feature_importance, palette='viridis', ax=ax)
ax.set_title(f"{model_name} Feature Importance")
st.pyplot(fig)
def main():
# Load data
df, df_cleaned, X, y, X_train, X_test, y_train, y_test, weather_mapping = load_data()
# Sidebar menu
menu = st.sidebar.selectbox("Choose Analysis", [
"Data Overview",
"Data Visualization",
"Model Training",
"Model Comparison"
])
if menu == "Data Overview":
st.header("Dataset Overview")
# Get dataset overview
overview = get_dataset_overview(df)
# Create columns for side-by-side display
col1, col2, col3, col4 = st.columns(4)
# Display overview metrics
with col1:
st.metric(label="Total Records", value=overview["Total Records"])
with col2:
st.metric(label="Features", value=overview["Features"])
with col3:
st.metric(label="Target Classes", value=overview["Target Classes"])
with col4:
st.metric(label="Missing Values", value=overview["Missing Values"])
# Display first few rows
st.subheader("First Few Rows")
st.dataframe(df.head())
# Weather Type Distribution
st.subheader("Weather Type Distribution")
weather_dist = df['weather'].value_counts()
col1, col2 = st.columns(2)
with col1:
st.dataframe(weather_dist)
with col2:
fig, ax = plt.subplots()
weather_dist.plot(kind='pie', autopct='%1.1f%%', ax=ax)
ax.set_title("Weather Type Percentage")
st.pyplot(fig)
# Descriptive Statistics
st.subheader("Descriptive Statistics")
st.dataframe(df.describe())
elif menu == "Data Visualization":
st.header("Weather Data Visualizations")
viz_option = st.selectbox("Choose Visualization", [
"Weather Type Distribution",
"Temperature Relationship",
"Correlation Heatmap"
])
if viz_option == "Weather Type Distribution":
plot_weather_distribution(df)
elif viz_option == "Temperature Relationship":
plot_temp_relationship(df)
elif viz_option == "Correlation Heatmap":
fig, ax = plt.subplots(figsize=(10, 8))
corr_matrix = pd.concat([X, y], axis=1).corr()
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", vmin=-1, vmax=1, ax=ax)
ax.set_title("Correlation Heatmap")
st.pyplot(fig)
elif menu == "Model Training":
st.header("Machine Learning Models")
# Train models
results = train_models(X_train, X_test, y_train, y_test)
model_select = st.selectbox("Choose Model", list(results.keys()))
model_result = results[model_select]
st.write(f"{model_select} Results:")
st.write(f"Test Accuracy: {model_result['accuracy']:.4f}")
st.write(f"Cross-Validation Mean Accuracy: {model_result['cv_mean']:.4f}")
st.write(f"Cross-Validation Std: {model_result['cv_std']:.4f}")
# Confusion Matrix
plot_confusion_matrix(y_test, model_result['pred'], model_select, weather_mapping)
# Feature Importance (for Decision Tree and Random Forest)
if model_select != 'Naive Bayes':
plot_feature_importance(model_result['model'], X, model_select)
elif menu == "Model Comparison":
st.header("Model Performance Comparison")
# Train models if not already trained
results = train_models(X_train, X_test, y_train, y_test)
# Create comparison DataFrame
comparison_df = pd.DataFrame({
'Model': list(results.keys()),
'Test Accuracy': [results[model]['accuracy'] for model in results],
'CV Mean Accuracy': [results[model]['cv_mean'] for model in results],
'CV Std': [results[model]['cv_std'] for model in results]
})
st.write("Model Performance Comparison:")
st.dataframe(comparison_df)
# Bar plots for comparison
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# Test Accuracy Comparison
sns.barplot(x='Model', y='Test Accuracy', data=comparison_df, ax=ax1)
ax1.set_title('Test Accuracy Comparison')
ax1.tick_params(axis='x', rotation=45)
# Cross-validation Comparison
sns.barplot(x='Model', y='CV Mean Accuracy', data=comparison_df, ax=ax2)
ax2.errorbar(x=range(len(comparison_df)),
y=comparison_df['CV Mean Accuracy'],
yerr=comparison_df['CV Std'] * 2,
fmt='none', color='black', capsize=5)
ax2.set_title('Cross-validation Accuracy')
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
st.pyplot(fig)
if __name__ == "__main__":
main() |