Seattle-Weather / app.py
cisemh's picture
weather app
f7d41c0
raw
history blame
9.14 kB
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
# Page configuration
st.set_page_config(
page_title="Seattle Weather Analysis",
page_icon="🌦️",
layout="wide"
)
# Title and introduction
st.title("🌦️ Seattle Weather Machine Learning")
st.markdown("""
This dashboard analyzes Seattle weather data using different machine learning models.
The dataset includes weather attributes and their classification.
""")
def get_dataset_overview(df):
"""
Generate a comprehensive overview of the dataset
"""
return {
"Total Records": len(df),
"Features": len(df.columns) - 1, # Excluding target column
"Target Classes": len(df['weather'].unique()),
"Missing Values": df.isnull().sum().sum()
}
def load_data():
"""Load and preprocess the Seattle weather dataset"""
df = pd.read_csv('seattle-weather.csv')
df_cleaned = df.drop(columns=['date'])
weather_mapping = {'drizzle': 0, 'rain': 1, 'sun': 2, 'snow': 3, 'fog': 4}
df_cleaned['weather_encoded'] = df_cleaned['weather'].map(weather_mapping)
# Split features and target
X = df_cleaned.drop(columns=['weather', 'weather_encoded'])
y = df_cleaned['weather_encoded']
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled = pd.DataFrame(X_scaled, columns=X.columns)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
return df, df_cleaned, X, y, X_train, X_test, y_train, y_test, weather_mapping
def plot_weather_distribution(df):
"""Plot distribution of weather types"""
fig, ax = plt.subplots()
sns.countplot(x='weather', data=df, palette='viridis', ax=ax)
ax.set_title("Distribution of Weather Types")
st.pyplot(fig)
def plot_temp_relationship(df):
"""Plot relationship between max and min temperatures"""
fig, ax = plt.subplots()
sns.scatterplot(x='temp_max', y='temp_min', hue='weather', data=df, ax=ax)
ax.set_title("Relationship Between Temp_max and Temp_min")
st.pyplot(fig)
def train_models(X_train, X_test, y_train, y_test):
"""Train Naive Bayes, Decision Tree, and Random Forest models"""
models = {
'Naive Bayes': GaussianNB(),
'Decision Tree': DecisionTreeClassifier(random_state=42, max_depth=5),
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
cv_scores = cross_val_score(model, X_train, y_train, cv=5)
results[name] = {
'model': model,
'accuracy': accuracy,
'cv_mean': cv_scores.mean(),
'cv_std': cv_scores.std(),
'pred': y_pred
}
return results
def plot_confusion_matrix(y_test, y_pred, model_name, weather_mapping):
"""Plot confusion matrix for a given model"""
fig, ax = plt.subplots()
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=list(weather_mapping.keys()),
yticklabels=list(weather_mapping.keys()), ax=ax)
ax.set_title(f"Confusion Matrix - {model_name}")
ax.set_xlabel("Predicted")
ax.set_ylabel("Actual")
st.pyplot(fig)
def plot_feature_importance(model, X, model_name):
"""Plot feature importance for a given model"""
fig, ax = plt.subplots()
feature_importance = pd.DataFrame({
'Feature': X.columns,
'Importance': model.feature_importances_
}).sort_values('Importance', ascending=False)
sns.barplot(x='Importance', y='Feature', data=feature_importance, palette='viridis', ax=ax)
ax.set_title(f"{model_name} Feature Importance")
st.pyplot(fig)
def main():
# Load data
df, df_cleaned, X, y, X_train, X_test, y_train, y_test, weather_mapping = load_data()
# Sidebar menu
menu = st.sidebar.selectbox("Choose Analysis", [
"Data Overview",
"Data Visualization",
"Model Training",
"Model Comparison"
])
if menu == "Data Overview":
st.header("Dataset Overview")
# Get dataset overview
overview = get_dataset_overview(df)
# Create columns for side-by-side display
col1, col2, col3, col4 = st.columns(4)
# Display overview metrics
with col1:
st.metric(label="Total Records", value=overview["Total Records"])
with col2:
st.metric(label="Features", value=overview["Features"])
with col3:
st.metric(label="Target Classes", value=overview["Target Classes"])
with col4:
st.metric(label="Missing Values", value=overview["Missing Values"])
# Display first few rows
st.subheader("First Few Rows")
st.dataframe(df.head())
# Weather Type Distribution
st.subheader("Weather Type Distribution")
weather_dist = df['weather'].value_counts()
col1, col2 = st.columns(2)
with col1:
st.dataframe(weather_dist)
with col2:
fig, ax = plt.subplots()
weather_dist.plot(kind='pie', autopct='%1.1f%%', ax=ax)
ax.set_title("Weather Type Percentage")
st.pyplot(fig)
# Descriptive Statistics
st.subheader("Descriptive Statistics")
st.dataframe(df.describe())
elif menu == "Data Visualization":
st.header("Weather Data Visualizations")
viz_option = st.selectbox("Choose Visualization", [
"Weather Type Distribution",
"Temperature Relationship",
"Correlation Heatmap"
])
if viz_option == "Weather Type Distribution":
plot_weather_distribution(df)
elif viz_option == "Temperature Relationship":
plot_temp_relationship(df)
elif viz_option == "Correlation Heatmap":
fig, ax = plt.subplots(figsize=(10, 8))
corr_matrix = pd.concat([X, y], axis=1).corr()
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", vmin=-1, vmax=1, ax=ax)
ax.set_title("Correlation Heatmap")
st.pyplot(fig)
elif menu == "Model Training":
st.header("Machine Learning Models")
# Train models
results = train_models(X_train, X_test, y_train, y_test)
model_select = st.selectbox("Choose Model", list(results.keys()))
model_result = results[model_select]
st.write(f"{model_select} Results:")
st.write(f"Test Accuracy: {model_result['accuracy']:.4f}")
st.write(f"Cross-Validation Mean Accuracy: {model_result['cv_mean']:.4f}")
st.write(f"Cross-Validation Std: {model_result['cv_std']:.4f}")
# Confusion Matrix
plot_confusion_matrix(y_test, model_result['pred'], model_select, weather_mapping)
# Feature Importance (for Decision Tree and Random Forest)
if model_select != 'Naive Bayes':
plot_feature_importance(model_result['model'], X, model_select)
elif menu == "Model Comparison":
st.header("Model Performance Comparison")
# Train models if not already trained
results = train_models(X_train, X_test, y_train, y_test)
# Create comparison DataFrame
comparison_df = pd.DataFrame({
'Model': list(results.keys()),
'Test Accuracy': [results[model]['accuracy'] for model in results],
'CV Mean Accuracy': [results[model]['cv_mean'] for model in results],
'CV Std': [results[model]['cv_std'] for model in results]
})
st.write("Model Performance Comparison:")
st.dataframe(comparison_df)
# Bar plots for comparison
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# Test Accuracy Comparison
sns.barplot(x='Model', y='Test Accuracy', data=comparison_df, ax=ax1)
ax1.set_title('Test Accuracy Comparison')
ax1.tick_params(axis='x', rotation=45)
# Cross-validation Comparison
sns.barplot(x='Model', y='CV Mean Accuracy', data=comparison_df, ax=ax2)
ax2.errorbar(x=range(len(comparison_df)),
y=comparison_df['CV Mean Accuracy'],
yerr=comparison_df['CV Std'] * 2,
fmt='none', color='black', capsize=5)
ax2.set_title('Cross-validation Accuracy')
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
st.pyplot(fig)
if __name__ == "__main__":
main()