Spaces:
Sleeping
Sleeping
File size: 1,722 Bytes
6c6d2f7 f38ba4d 6c6d2f7 887c95b f1efe67 f38ba4d 514fc02 4b8f9d6 769f777 f38ba4d 7cbc7f5 4f13759 6c6d2f7 4f13759 769f777 4f13759 887c95b 4f13759 6c6d2f7 db1852e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset
# Load the Spider dataset
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
def generate_sql_from_user_input(query):
# Generate SQL for the user's query
input_text = "translate English to SQL: " + query
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
outputs = model.generate(**inputs, max_length=512)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
return sql_query
def find_matching_sql(nl_query):
# Find the matching SQL query from the Spider dataset
for item in spider_dataset:
if item['question'].lower() == nl_query.lower():
return item['query']
return "No matching SQL query found in the Spider dataset."
# Create a Gradio interface
interface = gr.Interface(
fn=lambda query: {
"Generated SQL Query": generate_sql_from_user_input(query),
"Matching SQL Query from Spider Dataset": find_matching_sql(query)
},
inputs=gr.Textbox(label="Enter your natural language query"),
outputs=[gr.Textbox(label="Generated SQL Query"), gr.Textbox(label="Matching SQL Query from Spider Dataset")],
title="NL to SQL with T5 using Spider Dataset",
description="This model generates an SQL query for your natural language input and finds a matching SQL query from the Spider dataset."
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|