Spaces:
Sleeping
Sleeping
File size: 2,417 Bytes
6c6d2f7 f38ba4d 6c6d2f7 887c95b f1efe67 f38ba4d 514fc02 f38ba4d 887c95b 514fc02 d256c7e 6c6d2f7 f38ba4d 514fc02 4b8f9d6 f38ba4d 514fc02 f38ba4d 6c6d2f7 f38ba4d 7cbc7f5 6c6d2f7 f38ba4d 887c95b 6c6d2f7 db1852e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset
# Load the Spider dataset
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
# Extract schema information from the dataset
db_ids = set()
table_names = set()
column_names = set()
for item in spider_dataset:
db_ids.add(item['db_id'])
for table in item['db']['table_names_original']:
table_names.add(table)
for column in item['db']['column_names_original']:
column_names.add(column[1])
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
def post_process_sql_query(sql_query):
# Modify the SQL query to match the dataset's schema
# This is just an example and might need to be adapted based on the dataset and model output
for db_id in db_ids:
if "DB_ID" in sql_query:
sql_query = sql_query.replace("DB_ID", db_id)
break # Assuming only one database is referenced in the query
for table_name in table_names:
if "TABLE" in sql_query:
sql_query = sql_query.replace("TABLE", table_name)
break # Assuming only one table is referenced in the query
for column_name in column_names:
if "COLUMN" in sql_query:
sql_query = sql_query.replace("COLUMN", column_name, 1)
return sql_query
def generate_sql_from_user_input(query):
# Generate SQL for the user's query
input_text = "translate English to SQL: " + query
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
outputs = model.generate(**inputs, max_length=512)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Post-process the SQL query to match the dataset's schema
sql_query = post_process_sql_query(sql_query)
return sql_query
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql_from_user_input,
inputs=gr.Textbox(label="Enter your natural language query"),
outputs=gr.Textbox(label="Generated SQL Query"),
title="NL to SQL with T5 using Spider Dataset",
description="This model generates an SQL query for your natural language input based on the Spider dataset."
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|