File size: 8,534 Bytes
d6614dc
4cac868
d6614dc
9ef0f25
29b5baf
433f4b7
ba5567b
433f4b7
 
4cac868
e1b10c7
4cac868
 
 
 
 
 
 
 
 
 
808cfce
 
 
 
 
 
a006f1b
9ef0f25
4cac868
a006f1b
 
 
 
 
 
 
999b913
 
ba5567b
 
 
 
 
 
 
 
433f4b7
 
e1b10c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ee8cd
e1b10c7
 
433f4b7
 
 
e1b10c7
 
 
 
 
 
 
 
 
 
 
 
f6ee8cd
e1b10c7
 
63ae026
e1b10c7
 
 
f6ee8cd
 
 
 
 
 
e1b10c7
 
 
 
 
 
 
 
fd1210f
 
 
 
 
 
ba5567b
 
 
 
 
433f4b7
 
e1b10c7
 
 
 
 
 
 
 
 
 
808cfce
e1b10c7
 
 
808cfce
433f4b7
efdb63c
 
808cfce
9ef0f25
e1b10c7
 
 
 
 
 
 
 
 
 
 
9ef0f25
e1b10c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ee8cd
9ef0f25
e1b10c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5567b
e1b10c7
 
 
 
 
fd1210f
 
e1b10c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5567b
9ef0f25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
from PIL import Image, ImageDraw

from inference import generate_image

TASK_TO_INDEX = {"Task 1": 0, "Task 2": 1, "Task 3": 2, "Task 4": 3}
TASK_OPTIMAL_COORDS = {0: (325, 326), 1: (59, 1126), 2: (47, 102), 3: (497, 933)}


def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image:
    """Creates an image with a marker at the specified coordinates"""
    base_image = Image.open(image_path)
    marked_image = base_image.copy()
    draw = ImageDraw.Draw(marked_image)
    marker_size = 10
    marker_color = "red"
    draw.line([x - marker_size, y, x + marker_size, y], fill=marker_color, width=2)
    draw.line([x, y - marker_size, x, y + marker_size], fill=marker_color, width=2)
    return marked_image


def update_reference_image(choice: int) -> tuple[str, int, str]:
    image_path = f"imgs/pattern_{choice}.png"
    heatmap_path = f"imgs/heatmap_{choice}.png"
    return image_path, choice, heatmap_path


def update_marker(image_idx: int, evt: gr.SelectData) -> tuple[Image.Image, tuple[int, int]]:
    x, y = evt.index[0], evt.index[1]
    heatmap_path = f"imgs/heatmap_{image_idx}.png"
    return create_marker_overlay(heatmap_path, x, y), (x, y)


def generate_output_image(image_idx: int, coords: tuple[int, int]) -> Image.Image:
    x, y = coords
    x_norm, y_norm = x / 1155, y / 1155
    return generate_image(image_idx, x_norm, y_norm)


def find_optimal_latent(image_idx: int) -> tuple[Image.Image, tuple[int, int], Image.Image]:
    x, y = TASK_OPTIMAL_COORDS[image_idx]
    heatmap_path = f"imgs/heatmap_{image_idx}.png"
    marked_heatmap = create_marker_overlay(heatmap_path, x, y)
    output_img = generate_output_image(image_idx, (x, y))
    return marked_heatmap, (x, y), output_img


with gr.Blocks(
    css="""
    .container {
        max-width: 1000px !important;
        width: 100% !important;
        margin-left: auto !important;
        margin-right: auto !important;
        padding: 0 1rem !important;
    }
    .diagram-container {
        width: 80% !important;
        max-width: 800px !important;
        margin-left: auto !important;
        margin-right: auto !important;
    }
    .diagram-container img {
        width: 100% !important;
        height: auto !important;
        object-fit: contain !important;
    }
    .radio-container {
        width: 100% !important;
        max-width: 450px !important;
        margin-left: auto !important;
        margin-right: auto !important;
    }
    .image-container {
        width: 100% !important;
        aspect-ratio: 1 !important;
        max-width: 450px !important;
        margin-left: auto !important;
        margin-right: auto !important;
    }
    .image-container img {
        width: 100% !important;
        height: 100% !important;
        object-fit: contain !important;
    }
    .coordinate-container {
        width: 100% !important;
        aspect-ratio: 1 !important;
        position: relative !important;
        max-width: 600px !important;
        margin-left: auto !important;
        margin-right: auto !important;
    }
    .coordinate-container img {
        width: 100% !important;
        height: 100% !important;
        object-fit: contain !important;
    }
    .button-container {
        display: flex !important;
        justify-content: center !important;
        width: 100% !important;
        max-width: 600px !important;
        margin-left: auto !important;
        margin-right: auto !important;
    }
    .documentation {
        margin-top: 2rem !important;
        padding: 1rem !important;
        background-color: #f8f9fa !important;
        border-radius: 8px !important;
    }
    .optimal-button {
        margin-top: 1rem !important;
        margin-bottom: 1rem !important;
        width: 200px !important;
    }
"""
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown(
            """
            # Interactive Image Generation
            
            ## Method Overview
            This interactive demo showcases our novel image generation method that uses coordinate-based control.
            The process allows precise control over generated patterns through a coordinate-conditioning mechanism.
            """
        )

        with gr.Column(elem_classes="diagram-container"):
            gr.Image(
                value="imgs/lpn_diagram.png",
                show_label=False,
                interactive=False,
                show_download_button=False,
                show_fullscreen_button=False,
            )

        gr.Markdown(
            """
            ### How to Use
            1. Choose a pattern generation task using the radio buttons
            2. View the target pattern for your selected task
            3. Click anywhere in the heatmap to specify coordinates in the latent space
            4. See the generated image based on your selection
            
            Use the "Find Optimal Latent" button to automatically select pre-determined optimal coordinates.
            """
        )

        with gr.Row():
            with gr.Column(scale=3):
                selected_idx = gr.State(value=0)
                coords = gr.State()

                with gr.Column(elem_classes="radio-container"):
                    task_select = gr.Radio(
                        choices=["Task 1", "Task 2", "Task 3", "Task 4"],
                        value="Task 1",
                        label="Select Task",
                        interactive=True,
                    )

                gr.Markdown("### Reference Pattern")
                with gr.Column(elem_classes="image-container"):
                    reference_image = gr.Image(
                        value="imgs/pattern_0.png",
                        show_label=False,
                        interactive=False,
                        show_download_button=False,
                        show_fullscreen_button=False,
                    )

                gr.Markdown("### Generated Output")
                with gr.Column(elem_classes="image-container"):
                    output_image = gr.Image(
                        show_label=False,
                        interactive=False,
                        show_download_button=False,
                        show_fullscreen_button=False,
                    )

            with gr.Column(scale=4):
                gr.Markdown("### Coordinate Selector")
                gr.Markdown(
                    "Click anywhere in the image below to select (x, y) coordinates in the latent space"
                )

                with gr.Column(elem_classes="coordinate-container"):
                    coord_selector = gr.Image(
                        value="imgs/heatmap_0.png",
                        show_label=False,
                        interactive=False,
                        sources=[],
                        container=True,
                        show_download_button=False,
                        show_fullscreen_button=False,
                    )

                with gr.Column(elem_classes="button-container"):
                    optimal_button = gr.Button("Find Optimal Latent", elem_classes="optimal-button")

        with gr.Column(elem_classes="documentation"):
            gr.Markdown(
                """
                ### Technical Details
                Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns. 
                The heatmap visualization shows the distribution of pattern characteristics across the latent space.
                
                For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
                """
            )

        # Event handlers
        task_select.change(
            fn=lambda x: update_reference_image(TASK_TO_INDEX[x]),
            inputs=[task_select],
            outputs=[reference_image, selected_idx, coord_selector],
        )

        coord_selector.select(
            fn=update_marker,
            inputs=[selected_idx],
            outputs=[coord_selector, coords],
            trigger_mode="multiple",
        ).then(
            fn=generate_output_image,
            inputs=[selected_idx, coords],
            outputs=output_image,
        )

        optimal_button.click(
            fn=find_optimal_latent,
            inputs=[selected_idx],
            outputs=[coord_selector, coords, output_image],
        )

demo.launch()