Spaces:
Runtime error
Runtime error
File size: 1,754 Bytes
baa8f63 84cb511 3934a61 84cb511 c929f05 3934a61 bcf654a 6722d35 84cb511 1fb01d9 84cb511 1fb01d9 84cb511 3934a61 1fb01d9 724733f 3934a61 84cb511 3934a61 84cb511 c929f05 84cb511 6bdc5d4 84cb511 6bdc5d4 84cb511 6bdc5d4 84cb511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
from dotenv import load_dotenv
import gradio as gr
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableSequence
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize the HuggingFace model
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
huggingfacehub_api_token=HF_TOKEN,
temperature=0.7,
max_new_tokens=200
)
# Define a prompt template for generating a blog
TEMPLATE = """
Write a detailed blog post on the following topic:
Topic: {topic}
Make sure the blog post is informative, engaging, and well-structured.
"""
# Create a prompt template instance
blog_prompt_template = PromptTemplate(input_variables=["topic"], template=TEMPLATE)
# Create the sequence of runnables
blog_chain = (
blog_prompt_template
| llm
| StrOutputParser()
)
def generate_blog_post(topic: str) -> str:
if topic:
# Generate the blog post
blog_post = blog_chain.invoke({"topic": topic})
return blog_post
else:
return "Please enter a topic for the blog post."
# Define the Gradio interface
interface = gr.Interface(
fn=generate_blog_post,
inputs=[
gr.Textbox(label="Blog Topic", placeholder="Enter the topic here"),
],
outputs="text",
title="AI Blog Generator",
description="Welcome to the AI Blog Generator. This tool allows you to generate high-quality, engaging blog posts in just a few clicks. Simply provide a topic, and the AI will create a detailed blog post for you.",
theme="default"
)
if __name__ == "__main__":
interface.launch()
|