Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ load_dotenv()
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
12 |
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
13 |
|
14 |
-
|
15 |
# Function to generate blog content
|
16 |
def generate_blog(topic, keywords):
|
17 |
prompt_template = f"""
|
@@ -26,9 +25,9 @@ def generate_blog(topic, keywords):
|
|
26 |
|
27 |
Blog:
|
28 |
"""
|
29 |
-
input_ids = tokenizer(prompt_template, return_tensors="pt")
|
30 |
-
outputs = model.generate(
|
31 |
-
blog_content = tokenizer.decode(outputs[0])
|
32 |
|
33 |
return blog_content
|
34 |
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
12 |
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
13 |
|
|
|
14 |
# Function to generate blog content
|
15 |
def generate_blog(topic, keywords):
|
16 |
prompt_template = f"""
|
|
|
25 |
|
26 |
Blog:
|
27 |
"""
|
28 |
+
input_ids = tokenizer(prompt_template, return_tensors="pt", max_length=512, truncation=True)
|
29 |
+
outputs = model.generate(input_ids["input_ids"], max_length=800, num_return_sequences=1, temperature=0.7)
|
30 |
+
blog_content = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
return blog_content
|
33 |
|