File size: 7,527 Bytes
5021a0c 63f1d6d 4337b98 5021a0c 552e1db e42e13d 0596274 fb91b69 284179e 7042e46 552e1db 5021a0c 552e1db 2f93aef 63f1d6d 2f93aef 284179e 2f93aef fb91b69 2f93aef 552e1db 2f93aef 552e1db 2f93aef 552e1db 2f93aef 552e1db 2f93aef 552e1db 2f93aef 552e1db 2f93aef 552e1db 2f93aef 552e1db 2f93aef ef4c8b8 284179e 552e1db 2f93aef 284179e 2f93aef 552e1db 2f93aef 284179e 2f93aef d3fce98 552e1db 2f93aef 4337b98 5021a0c 284179e 2f93aef 284179e 2f93aef 284179e 2f93aef 284179e 2f93aef 284179e 2f93aef 5021a0c 552e1db 284179e 5021a0c 552e1db 5021a0c 92f530c 5eeb00f 5021a0c 552e1db 2f93aef 5021a0c 92f530c 5021a0c 552e1db 5021a0c 284179e 5021a0c 2f93aef 5021a0c 552e1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re # Import the regular expression module
from pathlib import Path
# At the top of your file:
SILENCE_PATH = Path(__file__).parent.absolute() / "Silence.mp3"
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Text-to-speech function for a single paragraph with SS handling
async def paragraph_to_speech(text, voice, rate, pitch):
voice3 ="en-US-BrianMultilingualNeural - en-US (Male)" #good for reading
voice1F ="en-US-EmmaNeural - en-US (Female)"
voice2 = "it-IT-GiuseppeMultilingualNeural - it-IT (Male)"
voice2F = "en-US-JennyNeural - en-US (Female)"
voice1 = "en-AU-WilliamNeural - en-AU (Male)"
voice3F = "en-HK-YanNeural - en-HK (Female)"
voice4 = "en-GB-MaisieNeural - en-GB (Female)" #Child
voice5 = "en-GB-RyanNeural - en-GB (Male)" #Old Man
if not text.strip():
return None, [] # Return None for audio path and empty list for silence
audio_segments = []
silence_durations = []
parts = re.split(r'(SS\d+\.?\d*)', text)
for part in parts:
if re.match(r'SS\d+\.?\d*', part):
if SILENCE_PATH.exists():
audio_segments.append(str(SILENCE_PATH))
print(f"Silence added at {SILENCE_PATH}")
else:
# Create silent segment programmatically
silent_audio = AudioSegment.silent(duration=1000) # 1 second
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
silent_audio.export(tmp_file.name, format="mp3")
audio_segments.append(tmp_file.name)
print(f"Created silent segment at {tmp_file.name}")
elif part.strip():
processed_text = part
current_voice = voice
current_rate = rate
current_pitch = pitch
if part.startswith("1F"):
processed_text = part[2:]
current_voice = voice1F.split(" - ")[0]
elif part.startswith("2F"):
processed_text = part[2:]
current_voice = voice2F.split(" - ")[0]
elif part.startswith("3F"):
processed_text = part[2:]
current_voice = voice3F.split(" - ")[0]
elif part.startswith("1M"):
processed_text = part[2:]
current_voice = voice1.split(" - ")[0]
elif part.startswith("2M"):
processed_text = part[2:]
current_voice = voice2.split(" - ")[0]
elif part.startswith("3M"):
processed_text = part[2:]
current_voice = voice3.split(" - ")[0]
elif part.startswith("1C"):
processed_text = part[2:]
current_voice = voice4.split(" - ")[0]
elif part.startswith("1O"):
processed_text = part[2:]
current_voice = voice5.split(" - ")[0]
current_pitch = -30
current_rate = -20
else:
# Use selected voice, or fallback to default
#voice_short_name = (voice or default_voice).split(" - ")[0]
current_voice = (voice or default_voice).split(" - ")[0]
processed_text=part[:]
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
audio_segments.append(tmp_path)
else:
audio_segments.append(None) # Empty string
return audio_segments, silence_durations
# Main text-to-speech function that processes paragraphs and silence
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
paragraphs = [p.strip() for p in re.split(r'"', text) if p.strip()]
final_audio_segments = []
for paragraph in paragraphs:
audio_paths, silence_times = await paragraph_to_speech(paragraph, voice, rate, pitch)
if audio_paths:
for i, path in enumerate(audio_paths):
final_audio_segments.append(path)
if i < len(silence_times):
final_audio_segments.append(silence_times[i])
if not any(isinstance(item, str) for item in final_audio_segments):
return None, None # No actual audio generated
if all(not isinstance(item, str) for item in final_audio_segments):
return None, "Only silence markers found."
combined_audio_path = tempfile.mktemp(suffix=".mp3")
with open(combined_audio_path, 'wb') as outfile:
for segment in final_audio_segments:
if isinstance(segment, str):
try:
with open(segment, 'rb') as infile:
outfile.write(infile.read())
os.remove(segment) # Clean up individual files
except FileNotFoundError:
print(f"Warning: Audio file not found: {segment}")
return combined_audio_path, None
# Gradio interface function
@spaces.GPU
def tts_interface(text, voice, rate, pitch):
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
return audio, warning
# Create Gradio application
import gradio as gr
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)" # 👈 Pick one of the available voices
description = """
Default = male, other voices 1F:US_Emma, 2F:US_Jenny, 3F:HK_Yan, 1M:AU_Will, 2M:IT_Guiseppe,3M:US_Brian, 1C: Childvoice, 1O = OldMan
You can insert silence using the marker 'SS' (This will insert a Silence period from the Silence.mp3 file).
Enter your text, select a voice, and adjust the speech rate and pitch.
The application will process your text paragraph by paragraph (separated by two blank lines).
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines. Use 'SS[duration]' for silence."),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph)",
description=description,
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
analytics_enabled=False,
allow_flagging=False
)
return demo
# Run the application
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch() |