cnph001's picture
Update app.py
fb91b69 verified
raw
history blame
7.53 kB
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re # Import the regular expression module
from pathlib import Path
# At the top of your file:
SILENCE_PATH = Path(__file__).parent.absolute() / "Silence.mp3"
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Text-to-speech function for a single paragraph with SS handling
async def paragraph_to_speech(text, voice, rate, pitch):
voice3 ="en-US-BrianMultilingualNeural - en-US (Male)" #good for reading
voice1F ="en-US-EmmaNeural - en-US (Female)"
voice2 = "it-IT-GiuseppeMultilingualNeural - it-IT (Male)"
voice2F = "en-US-JennyNeural - en-US (Female)"
voice1 = "en-AU-WilliamNeural - en-AU (Male)"
voice3F = "en-HK-YanNeural - en-HK (Female)"
voice4 = "en-GB-MaisieNeural - en-GB (Female)" #Child
voice5 = "en-GB-RyanNeural - en-GB (Male)" #Old Man
if not text.strip():
return None, [] # Return None for audio path and empty list for silence
audio_segments = []
silence_durations = []
parts = re.split(r'(SS\d+\.?\d*)', text)
for part in parts:
if re.match(r'SS\d+\.?\d*', part):
if SILENCE_PATH.exists():
audio_segments.append(str(SILENCE_PATH))
print(f"Silence added at {SILENCE_PATH}")
else:
# Create silent segment programmatically
silent_audio = AudioSegment.silent(duration=1000) # 1 second
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
silent_audio.export(tmp_file.name, format="mp3")
audio_segments.append(tmp_file.name)
print(f"Created silent segment at {tmp_file.name}")
elif part.strip():
processed_text = part
current_voice = voice
current_rate = rate
current_pitch = pitch
if part.startswith("1F"):
processed_text = part[2:]
current_voice = voice1F.split(" - ")[0]
elif part.startswith("2F"):
processed_text = part[2:]
current_voice = voice2F.split(" - ")[0]
elif part.startswith("3F"):
processed_text = part[2:]
current_voice = voice3F.split(" - ")[0]
elif part.startswith("1M"):
processed_text = part[2:]
current_voice = voice1.split(" - ")[0]
elif part.startswith("2M"):
processed_text = part[2:]
current_voice = voice2.split(" - ")[0]
elif part.startswith("3M"):
processed_text = part[2:]
current_voice = voice3.split(" - ")[0]
elif part.startswith("1C"):
processed_text = part[2:]
current_voice = voice4.split(" - ")[0]
elif part.startswith("1O"):
processed_text = part[2:]
current_voice = voice5.split(" - ")[0]
current_pitch = -30
current_rate = -20
else:
# Use selected voice, or fallback to default
#voice_short_name = (voice or default_voice).split(" - ")[0]
current_voice = (voice or default_voice).split(" - ")[0]
processed_text=part[:]
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
audio_segments.append(tmp_path)
else:
audio_segments.append(None) # Empty string
return audio_segments, silence_durations
# Main text-to-speech function that processes paragraphs and silence
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
paragraphs = [p.strip() for p in re.split(r'"', text) if p.strip()]
final_audio_segments = []
for paragraph in paragraphs:
audio_paths, silence_times = await paragraph_to_speech(paragraph, voice, rate, pitch)
if audio_paths:
for i, path in enumerate(audio_paths):
final_audio_segments.append(path)
if i < len(silence_times):
final_audio_segments.append(silence_times[i])
if not any(isinstance(item, str) for item in final_audio_segments):
return None, None # No actual audio generated
if all(not isinstance(item, str) for item in final_audio_segments):
return None, "Only silence markers found."
combined_audio_path = tempfile.mktemp(suffix=".mp3")
with open(combined_audio_path, 'wb') as outfile:
for segment in final_audio_segments:
if isinstance(segment, str):
try:
with open(segment, 'rb') as infile:
outfile.write(infile.read())
os.remove(segment) # Clean up individual files
except FileNotFoundError:
print(f"Warning: Audio file not found: {segment}")
return combined_audio_path, None
# Gradio interface function
@spaces.GPU
def tts_interface(text, voice, rate, pitch):
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
return audio, warning
# Create Gradio application
import gradio as gr
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)" # 👈 Pick one of the available voices
description = """
Default = male, other voices 1F:US_Emma, 2F:US_Jenny, 3F:HK_Yan, 1M:AU_Will, 2M:IT_Guiseppe,3M:US_Brian, 1C: Childvoice, 1O = OldMan
You can insert silence using the marker 'SS' (This will insert a Silence period from the Silence.mp3 file).
Enter your text, select a voice, and adjust the speech rate and pitch.
The application will process your text paragraph by paragraph (separated by two blank lines).
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines. Use 'SS[duration]' for silence."),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph)",
description=description,
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
analytics_enabled=False,
allow_flagging=False
)
return demo
# Run the application
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()