tablut / app.py
codelion's picture
Update app.py
f5a33e6 verified
raw
history blame
16 kB
import gradio as gr
from PIL import Image, ImageDraw
import numpy as np
import math
from io import BytesIO
import base64
# Constants
BOARD_SIZE = 9
CELL_SIZE = 50
PIECE_RADIUS = 20
EMPTY = 0
WHITE_SOLDIER = 1
BLACK_SOLDIER = 2
KING = 3
CASTLE = (4, 4) # Center of the 9x9 board (0-based indices)
CAMPS = [
(0,3), (0,4), (0,5), (1,4), # Top camp
(8,3), (8,4), (8,5), (7,4), # Bottom camp
(3,0), (4,0), (5,0), (4,1), # Left camp
(3,8), (4,8), (5,8), (4,7) # Right camp
]
ESCAPES = [(i,j) for i in [0,8] for j in range(BOARD_SIZE)] + [(i,j) for j in [0,8] for i in range(BOARD_SIZE) if (i,j) not in CAMPS]
COLORS = {
'empty': '#FFFFFF', # White for regular empty cells
'castle': '#808080', # Gray for castle
'camp': '#A0522D', # Brown for camps
'escape': '#00FF00', # Green for escape tiles
'white': '#FFFFFF', # White for white soldiers
'black': '#000000', # Black for black soldiers
'king': '#FFD700', # Gold for king
'highlight': '#FFFF00' # Yellow for selected cell
}
# Game state class
class TablutState:
def __init__(self):
self.board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int)
self.turn = 'WHITE'
self.black_in_camps = set(CAMPS) # Track black pieces in camps
self.setup_initial_position()
self.move_history = [] # To detect draws
def setup_initial_position(self):
self.board[4, 4] = KING
white_positions = [(3,4), (4,3), (4,5), (5,4), (2,4), (4,2), (4,6), (6,4)]
for pos in white_positions:
self.board[pos] = WHITE_SOLDIER
for pos in CAMPS:
self.board[pos] = BLACK_SOLDIER
def copy(self):
new_state = TablutState()
new_state.board = self.board.copy()
new_state.turn = self.turn
new_state.black_in_camps = self.black_in_camps.copy()
new_state.move_history = self.move_history.copy()
return new_state
# Utility functions
def pos_to_coord(pos):
"""Convert (row, col) to board coordinate (e.g., (4,4) -> 'E5')."""
row, col = pos
return f"{chr(ord('A') + col)}{row + 1}"
def coord_to_pos(coord):
"""Convert board coordinate (e.g., 'E5') to (row, col)."""
col = ord(coord[0].upper()) - ord('A')
row = int(coord[1]) - 1
return (row, col)
def is_adjacent_to_castle(pos):
x, y = pos
cx, cy = CASTLE
return (abs(x - cx) == 1 and y == cy) or (abs(y - cy) == 1 and x == cx)
def get_friendly_pieces(turn):
return [WHITE_SOLDIER, KING] if turn == 'WHITE' else [BLACK_SOLDIER]
def manhattan_distance(pos1, pos2):
return abs(pos1[0] - pos2[0]) + abs(pos1[1] - pos2[1])
# Game logic functions
def is_valid_move(state, from_pos, to_pos):
if from_pos == to_pos:
return False
piece = state.board[from_pos]
if state.turn == 'WHITE' and piece not in [WHITE_SOLDIER, KING]:
return False
if state.turn == 'BLACK' and piece != BLACK_SOLDIER:
return False
if state.board[to_pos] != EMPTY:
return False
from_row, from_col = from_pos
to_row, to_col = to_pos
if from_row != to_row and from_col != to_col:
return False
# Path must be clear
if from_row == to_row:
step = 1 if to_col > from_col else -1
for col in range(from_col + step, to_col, step):
if state.board[from_row, col] != EMPTY:
return False
else:
step = 1 if to_row > from_row else -1
for row in range(from_row + step, to_row, step):
if state.board[row, from_col] != EMPTY:
return False
# Castle is only for the king
if to_pos == CASTLE and piece != KING:
return False
# Camp restrictions
if to_pos in CAMPS:
if state.turn == 'WHITE' or (state.turn == 'BLACK' and from_pos not in state.black_in_camps):
return False
return True
def get_legal_moves(state, from_pos):
piece = state.board[from_pos]
if not piece or (state.turn == 'WHITE' and piece not in [WHITE_SOLDIER, KING]) or \
(state.turn == 'BLACK' and piece != BLACK_SOLDIER):
return []
row, col = from_pos
moves = []
for r in range(BOARD_SIZE):
if r != row:
to_pos = (r, col)
if is_valid_move(state, from_pos, to_pos):
moves.append(to_pos)
for c in range(BOARD_SIZE):
if c != col:
to_pos = (row, c)
if is_valid_move(state, from_pos, to_pos):
moves.append(to_pos)
return moves
def is_soldier_captured(state, pos, friendly):
x, y = pos
friendly_pieces = get_friendly_pieces(friendly)
# Standard capture
if y > 0 and y < BOARD_SIZE - 1:
if state.board[x, y-1] in friendly_pieces and state.board[x, y+1] in friendly_pieces:
return True
if x > 0 and x < BOARD_SIZE - 1:
if state.board[x-1, y] in friendly_pieces and state.board[x+1, y] in friendly_pieces:
return True
# Capture against castle or camp
if is_adjacent_to_castle(pos):
cx, cy = CASTLE
if x == cx:
if y < cy and y > 0 and state.board[x, y-1] in friendly_pieces:
return True
elif y > cy and y < BOARD_SIZE - 1 and state.board[x, y+1] in friendly_pieces:
return True
elif y == cy:
if x < cx and x > 0 and state.board[x-1, y] in friendly_pieces:
return True
elif x > cx and x < BOARD_SIZE - 1 and state.board[x+1, y] in friendly_pieces:
return True
if pos in CAMPS:
return False # Cannot capture pieces in camps
for camp in CAMPS:
if pos == (camp[0] + 1, camp[1]) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
elif pos == (camp[0] - 1, camp[1]) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
elif pos == (camp[0], camp[1] + 1) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
elif pos == (camp[0], camp[1] - 1) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
return False
def is_king_captured(state, pos):
x, y = pos
if pos == CASTLE:
return all(state.board[x + dx, y + dy] == BLACK_SOLDIER for dx, dy in [(-1,0), (1,0), (0,-1), (0,1)]
if 0 <= x + dx < BOARD_SIZE and 0 <= y + dy < BOARD_SIZE)
elif is_adjacent_to_castle(pos):
cx, cy = CASTLE
dx = cx - x
dy = cy - y
free_directions = [d for d in [(-1,0), (1,0), (0,-1), (0,1)] if d != (dx, dy)]
return all(state.board[x + d[0], y + d[1]] == BLACK_SOLDIER for d in free_directions
if 0 <= x + d[0] < BOARD_SIZE and 0 <= y + d[1] < BOARD_SIZE)
else:
return is_soldier_captured(state, pos, 'BLACK')
def apply_move(state, from_pos, to_pos):
new_state = state.copy()
piece = new_state.board[from_pos]
new_state.board[to_pos] = piece
new_state.board[from_pos] = EMPTY
if new_state.turn == 'BLACK' and from_pos in new_state.black_in_camps and to_pos not in CAMPS:
new_state.black_in_camps.discard(from_pos)
# Apply captures
captures = []
opponent = 'BLACK' if new_state.turn == 'WHITE' else 'WHITE'
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if new_state.board[x, y] == (WHITE_SOLDIER if opponent == 'WHITE' else BLACK_SOLDIER):
if is_soldier_captured(new_state, (x, y), new_state.turn):
captures.append((x, y))
if opponent == 'WHITE':
king_pos = find_king_position(new_state)
if king_pos and is_king_captured(new_state, king_pos):
captures.append(king_pos)
for pos in captures:
new_state.board[pos] = EMPTY
new_state.turn = 'BLACK' if new_state.turn == 'WHITE' else 'WHITE'
# Update move history for draw detection
board_tuple = tuple(new_state.board.flatten())
new_state.move_history.append(board_tuple)
return new_state
def find_king_position(state):
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if state.board[x, y] == KING:
return (x, y)
return None
def check_game_status(state):
king_pos = find_king_position(state)
if king_pos is None:
return "BLACK WINS"
if king_pos in ESCAPES:
return "WHITE WINS"
# Check for no legal moves
pieces = []
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if (state.turn == 'WHITE' and state.board[x, y] in [WHITE_SOLDIER, KING]) or \
(state.turn == 'BLACK' and state.board[x, y] == BLACK_SOLDIER):
pieces.append((x, y))
has_moves = False
for pos in pieces:
if get_legal_moves(state, pos):
has_moves = True
break
if not has_moves:
return "BLACK WINS" if state.turn == 'WHITE' else "WHITE WINS"
# Check for draw (same state twice)
board_tuple = tuple(state.board.flatten())
if state.move_history.count(board_tuple) >= 2:
return "DRAW"
return "CONTINUE"
# AI implementation
def evaluate_state(state):
status = check_game_status(state)
if status == "WHITE WINS":
return 1000
elif status == "BLACK WINS":
return -1000
elif status == "DRAW":
return 0
king_pos = find_king_position(state)
if not king_pos:
return -1000
# Heuristic: distance from king to nearest escape
min_escape_dist = min(manhattan_distance(king_pos, e) for e in ESCAPES)
white_pieces = sum(1 for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == WHITE_SOLDIER)
black_pieces = sum(1 for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == BLACK_SOLDIER)
# Encourage Black to surround king, White to escape
if state.turn == 'WHITE':
return -min_escape_dist * 10 + white_pieces * 5 - black_pieces * 3
else:
return min_escape_dist * 10 - white_pieces * 3 + black_pieces * 5
def minimax(state, depth, alpha, beta, maximizing_player):
if depth == 0 or check_game_status(state) != "CONTINUE":
return evaluate_state(state), None
if maximizing_player:
max_eval = -math.inf
best_move = None
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == BLACK_SOLDIER]
for from_pos in pieces:
for to_pos in get_legal_moves(state, from_pos):
new_state = apply_move(state, from_pos, to_pos)
eval_score, _ = minimax(new_state, depth - 1, alpha, beta, False)
if eval_score > max_eval:
max_eval = eval_score
best_move = (from_pos, to_pos)
alpha = max(alpha, eval_score)
if beta <= alpha:
break
return max_eval, best_move
else:
min_eval = math.inf
best_move = None
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] in [WHITE_SOLDIER, KING]]
for from_pos in pieces:
for to_pos in get_legal_moves(state, from_pos):
new_state = apply_move(state, from_pos, to_pos)
eval_score, _ = minimax(new_state, depth - 1, alpha, beta, True)
if eval_score < min_eval:
min_eval = eval_score
best_move = (from_pos, to_pos)
beta = min(beta, eval_score)
if beta <= alpha:
break
return min_eval, best_move
def ai_move(state):
if state.turn != 'BLACK':
return state, "Not AI's turn", None
depth = 3 # Adjustable for performance
_, move = minimax(state, depth, -math.inf, math.inf, True)
if move:
from_pos, to_pos = move
new_state = apply_move(state, from_pos, to_pos)
return new_state, f"AI moved from {pos_to_coord(from_pos)} to {pos_to_coord(to_pos)}", None
return state, "AI has no moves", None
# SVG board generation
def generate_board_svg(state, selected_pos=None):
width = BOARD_SIZE * CELL_SIZE
height = BOARD_SIZE * CELL_SIZE
svg = [f'<svg width="{width}" height="{height}" xmlns="http://www.w3.org/2000/svg">']
# Draw cells
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
pos = (x, y)
fill = COLORS['empty']
if pos == CASTLE:
fill = COLORS['castle']
elif pos in CAMPS:
fill = COLORS['camp']
elif pos in ESCAPES:
fill = COLORS['escape']
if pos == selected_pos:
fill = COLORS['highlight']
svg.append(f'<rect x="{y * CELL_SIZE}" y="{x * CELL_SIZE}" width="{CELL_SIZE}" height="{CELL_SIZE}" fill="{fill}" stroke="black" stroke-width="1"/>')
# Draw pieces
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
piece = state.board[x, y]
if piece != EMPTY:
cx = y * CELL_SIZE + CELL_SIZE // 2
cy = x * CELL_SIZE + CELL_SIZE // 2
color = COLORS['white'] if piece == WHITE_SOLDIER else COLORS['black'] if piece == BLACK_SOLDIER else COLORS['king']
svg.append(f'<circle cx="{cx}" cy="{cy}" r="{PIECE_RADIUS}" fill="{color}" stroke="black" stroke-width="1"/>')
# Draw grid labels
for i in range(BOARD_SIZE):
svg.append(f'<text x="5" y="{i * CELL_SIZE + CELL_SIZE // 2 + 5}" fill="black">{BOARD_SIZE - i}</text>')
svg.append(f'<text x="{i * CELL_SIZE + CELL_SIZE // 2 - 5}" y="{height - 10}" fill="black">{chr(ord("A") + i)}</text>')
svg.append('</svg>')
return ''.join(svg)
def svg_to_image(svg_content):
img = Image.new('RGB', (BOARD_SIZE * CELL_SIZE, BOARD_SIZE * CELL_SIZE), color='white')
# For Gradio, we encode SVG as base64 to display in HTML
svg_bytes = svg_content.encode('utf-8')
svg_base64 = base64.b64encode(svg_bytes).decode('utf-8')
return svg_base64
# Gradio interface functions
def click_board(state, selected_pos, evt: gr.SelectData):
if state.turn != 'WHITE':
return state, "It's the AI's turn", None, selected_pos
x = evt.index[1] // CELL_SIZE
y = evt.index[0] // CELL_SIZE
pos = (x, y)
if selected_pos is None:
# Select a piece
if state.board[pos] in [WHITE_SOLDIER, KING]:
return state, f"Selected {pos_to_coord(pos)}", None, pos
else:
return state, "Select a White piece or King", None, None
else:
# Try to move
if is_valid_move(state, selected_pos, pos):
new_state = apply_move(state, selected_pos, pos)
status = check_game_status(new_state)
if status != "CONTINUE":
return new_state, status, None, None
# Trigger AI move
ai_state, ai_message, _ = ai_move(new_state)
final_status = check_game_status(ai_state)
return ai_state, f"Your move to {pos_to_coord(pos)}. {ai_message}. {final_status if final_status != 'CONTINUE' else ''}", None, None
else:
return state, "Invalid move", None, None
def new_game():
state = TablutState()
return state, "New game started. Your turn (White).", generate_board_svg(state), None
# Gradio interface
with gr.Blocks(title="Tablut Game") as demo:
state = gr.State()
selected_pos = gr.State(value=None)
board_html = gr.HTML(label="Board")
message_label = gr.Label(label="Message")
new_game_button = gr.Button("New Game")
board_html.select(fn=click_board, inputs=[state, selected_pos], outputs=[state, message_label, board_html, selected_pos])
new_game_button.click(fn=new_game, outputs=[state, message_label, board_html, selected_pos])
demo.load(fn=new_game, outputs=[state, message_label, board_html, selected_pos])
# Note: demo.launch() is not needed for HF Spaces