File size: 11,800 Bytes
354bf5f
 
460480a
f86c87e
 
b0ead86
f86c87e
b0ead86
e570bda
b0ead86
f86c87e
d9c493b
b0ead86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86c87e
d9c493b
b0ead86
d9c493b
b0ead86
f86c87e
b0ead86
d9c493b
b0ead86
 
 
 
f86c87e
 
b0ead86
 
e570bda
 
b0ead86
e570bda
b0ead86
 
 
e570bda
 
b0ead86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e570bda
b0ead86
 
 
 
 
e570bda
b0ead86
 
 
62d3ca7
f86c87e
b0ead86
 
f86c87e
 
 
 
 
 
 
 
 
 
 
b0ead86
f86c87e
b0ead86
 
 
f86c87e
b0ead86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86c87e
b0ead86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86c87e
b0ead86
 
f86c87e
b0ead86
f86c87e
b0ead86
 
 
 
 
 
354bf5f
b0ead86
 
354bf5f
 
46a6686
 
f86c87e
354bf5f
b0ead86
 
ec59101
354bf5f
 
f86c87e
b0ead86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import pandas as pd
import tempfile
import os
import json
import hashlib
import asyncio
from io import BytesIO
from pathlib import Path
import openai
import gradio_client.utils

"""NetCom → WooCommerce transformer (Try 1 schema)
=================================================
Drop a *Reseller Schedule* CSV and get back a WooCommerce‑ready CSV that matches
`Try 1 - WooCommerce_Mapped_Data__Fixed_Attributes_and_Agenda_.csv` exactly –
including `Stock` and `Sold individually?` columns that NetCom doesn’t supply.

Highlights
----------
* Empty cells are skipped – no wasted GPT calls.
* GPT‑4o mini used with a tiny disk cache (`ai_response_cache/`).
* Brand → logo URLs hard‑coded below (update when media library changes).
"""

# ---------------------------------------------------------------------------
# Gradio JSON‑schema helper hot‑patch (bool schema bug)
# ---------------------------------------------------------------------------
_original = gradio_client.utils._json_schema_to_python_type

def _fixed_json_schema_to_python_type(schema, defs=None):
    if isinstance(schema, bool):  # gradio 4.29 bug
        return "any"
    return _original(schema, defs)

gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type  # type: ignore

# ---------------------------------------------------------------------------
# Tiny disk cache for OpenAI responses
# ---------------------------------------------------------------------------
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)


def _cache_path(prompt: str) -> Path:
    return CACHE_DIR / f"{hashlib.md5(prompt.encode()).hexdigest()}.json"


def _get_cached(prompt: str):
    try:
        return json.loads(_cache_path(prompt).read_text("utf-8"))["response"]
    except Exception:
        return None


def _set_cache(prompt: str, rsp: str):
    try:
        _cache_path(prompt).write_text(json.dumps({"prompt": prompt, "response": rsp}), "utf-8")
    except Exception:
        pass

# ---------------------------------------------------------------------------
# Async GPT helpers
# ---------------------------------------------------------------------------
async def _gpt(client: openai.AsyncOpenAI, prompt: str) -> str:
    cached = _get_cached(prompt)
    if cached is not None:
        return cached
    try:
        cmp = await client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": prompt}],
            temperature=0,
        )
        txt = cmp.choices[0].message.content
    except Exception as e:
        txt = f"Error: {e}"
    _set_cache(prompt, txt)
    return txt


async def _batch(texts: list[str], instruction: str) -> list[str]:
    """Return len(texts) list. Blank inputs remain blank."""
    res = ["" for _ in texts]
    idx, prompts = [], []
    for i, t in enumerate(texts):
        if isinstance(t, str) and t.strip():
            idx.append(i); prompts.append(f"{instruction}\n\nText: {t}")
    if not prompts:
        return res
    client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
    tasks = [_gpt(client, p) for p in prompts]
    outs = await asyncio.gather(*tasks)
    for k, v in enumerate(outs):
        res[idx[k]] = v
    return res

# ---------------------------------------------------------------------------
# Main converter
# ---------------------------------------------------------------------------

def process_woocommerce_data_in_memory(netcom_file):
    """Return BytesIO of Woo CSV."""
    # Brand logos
    brand_logo_map = {
        "Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
        "Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
        "Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
        "Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
        "EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
        "ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
        "PMI": "/wp-content/uploads/2025/04/PMI.png",
        "Comptia": "/wp-content/uploads/2025/04/Comptia.png",
        "Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
        "ISC2": "/wp-content/uploads/2025/04/ISC2.png",
        "AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
    }
    default_prereq = (
        "No specific prerequisites are required for this course. "
        "Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
    )
    # Load NetCom CSV
    df = pd.read_csv(netcom_file.name, encoding="latin1"); df.columns = df.columns.str.strip()
    def _col(opts):
        return next((c for c in opts if c in df.columns), None)
    # Column aliases
    col_desc = _col(["Description", "Decription"])
    col_obj  = _col(["Objectives", "objectives"])
    col_pre  = _col(["RequiredPrerequisite", "Required Pre-requisite"])
    col_out  = _col(["Outline"])
    col_dur  = _col(["Duration"])
    col_sid  = _col(["Course SID", "Course SID"])
    if col_dur is None:
        df["Duration"] = ""; col_dur = "Duration"
    # AI prep lists
    descs, objs, pres, outs = (df.get(c, pd.Series([""]*len(df))).fillna("").tolist() for c in (col_desc, col_obj, col_pre, col_out))
    loop = asyncio.new_event_loop(); asyncio.set_event_loop(loop)
    short_d, long_d, fmt_obj, fmt_out = loop.run_until_complete(asyncio.gather(
        _batch(descs, "Create a concise 250-character summary of this course description:"),
        _batch(descs, "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
        _batch(objs,  "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':"),
        _batch(outs,  "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':"),
    )); loop.close()
    fmt_pre = [default_prereq if not str(p).strip() else asyncio.run(_batch([p], "Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in pres]
    # Attach processed cols
    df["Short_Description"] = short_d; df["Condensed_Description"] = long_d
    df["Formatted_Objectives"] = fmt_obj; df["Formatted_Agenda"] = fmt_out; df["Formatted_Prerequisites"] = fmt_pre
    # Dates
    df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
    df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
    df_sorted = df.sort_values(["Course ID", "Course Start Date"])
    date_agg = df_sorted.groupby("Course ID")["Date_fmt"].apply(lambda s: ",".join(s.dropna().unique())).reset_index(name="Aggregated_Dates")
    time_agg = df_sorted.groupby("Course ID").apply(lambda g: ",".join(f"{st}-{et} {tz}" for st, et, tz in zip(g["Course Start Time"], g["Course End Time"], g["Time Zone"]))).reset_index(name="Aggregated_Times")
    parents = df_sorted.drop_duplicates("Course ID").merge(date_agg).merge(time_agg)
    # Parent rows
    woo_parent = pd.DataFrame({
        "Type": "variable",
        "SKU": parents["Course ID"],
        "Name": parents["Course Name"],
        "Published": 1,
        "Visibility in catalog": "visible",
        "Short description": parents["Short_Description"],
        "Description": parents["Condensed_Description"],
        "Tax status": "taxable",
        "In stock?": 1,
        "Stock": 1,
        "Sold individually?": 1,
        "Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
        "Categories": "courses",
        "Images": parents["Vendor"].map(brand_logo_map).fillna(""),
        "Parent": "",
        "Brands": parents["Vendor"],
        # Attributes
        "Attribute 1 name": "Date", "Attribute 1 value(s)": parents["Aggregated_Dates"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
        "Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
        "Attribute 3 name": "Time", "Attribute 3 value(s)": parents["Aggregated_Times"], "Attribute 3 visible": "visible", "Attribute 3 global": 1,
        # Meta
        "Meta: outline": parents["Formatted_Agenda"], "Meta: days": parents[col_dur], "Meta: location": "Virtual",
        "Meta: overview": parents["Target Audience"], "Meta: objectives": parents["Formatted_Objectives"],
        "Meta: prerequisites": parents["Formatted_Prerequisites"], "Meta: agenda": parents["Formatted_Agenda"],
    })
    # Child rows
    woo_child = pd.DataFrame({
        "Type": "variation, virtual",
        "SKU": df_sorted[col_sid].astype(str).str.strip(),
        "Name": df_sorted["Course Name"],
        "Published": 1,
        "Visibility in catalog": "visible",
        "Short description": df_sorted["Short_Description"],
        "Description": df_sorted["Condensed_Description"],
        "Tax status": "taxable",
        "In stock?": 1,
        "Stock": 1,
        "Sold individually?": 1,
        "Regular price": df_sorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
        "Categories": "courses",
        "Images": df_sorted["Vendor"].map(brand_logo_map).fillna(""),
        "Parent": df_sorted["Course ID"],
        "Brands": df_sorted["Vendor"],
        "Attribute 1 name": "Date", "Attribute 1 value(s)": df_sorted["Date_fmt"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
        "Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
        "Attribute 3 name": "Time", "Attribute 3 value(s)": df_sorted.apply(lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}", axis=1), "Attribute 3 visible": "visible", "Attribute 3 global": 1,
        "Meta: outline": df_sorted["Formatted_Agenda"], "Meta: days": df_sorted[col_dur], "Meta: location": "Virtual",
        "Meta: overview": df_sorted["Target Audience"], "Meta: objectives": df_sorted["Formatted_Objectives"],
        "Meta: prerequisites": df_sorted["Formatted_Prerequisites"], "Meta: agenda": df_sorted["Formatted_Agenda"],
    })
    # Combine & order
    combined = pd.concat([woo_parent, woo_child], ignore_index=True)
    column_order = [
        "Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands", "Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"
    ]
    combined = combined[column_order]
    buf = BytesIO(); combined.to_csv(buf, index=False, encoding="utf-8-sig"); buf.seek(0); return buf

# ---------------------------------------------------------------------------
# Gradio wrapper
# ---------------------------------------------------------------------------

def process_file(upload):
    return process_woocommerce_data_in_memory(upload)


interface = gr.Interface(
    fn=process_file,
    inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
    outputs=gr.File(label="Download WooCommerce CSV"),
    title="NetCom → WooCommerce CSV Processor",
    description="Upload a NetCom Reseller Schedule CSV to generate a WooCommerce‑import CSV (Try 1 schema).",
    analytics_enabled=False,
)

if __name__ == "__main__":
    if not os.getenv("OPENAI_API_KEY"):
        print("⚠️  OPENAI_API_KEY not set – AI paraphrasing will error out")
    interface.launch()