Spaces:
Runtime error
Runtime error
File size: 11,800 Bytes
354bf5f 460480a f86c87e b0ead86 f86c87e b0ead86 e570bda b0ead86 f86c87e d9c493b b0ead86 f86c87e d9c493b b0ead86 d9c493b b0ead86 f86c87e b0ead86 d9c493b b0ead86 f86c87e b0ead86 e570bda b0ead86 e570bda b0ead86 e570bda b0ead86 e570bda b0ead86 e570bda b0ead86 62d3ca7 f86c87e b0ead86 f86c87e b0ead86 f86c87e b0ead86 f86c87e b0ead86 f86c87e b0ead86 f86c87e b0ead86 f86c87e b0ead86 f86c87e b0ead86 354bf5f b0ead86 354bf5f 46a6686 f86c87e 354bf5f b0ead86 ec59101 354bf5f f86c87e b0ead86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import pandas as pd
import tempfile
import os
import json
import hashlib
import asyncio
from io import BytesIO
from pathlib import Path
import openai
import gradio_client.utils
"""NetCom → WooCommerce transformer (Try 1 schema)
=================================================
Drop a *Reseller Schedule* CSV and get back a WooCommerce‑ready CSV that matches
`Try 1 - WooCommerce_Mapped_Data__Fixed_Attributes_and_Agenda_.csv` exactly –
including `Stock` and `Sold individually?` columns that NetCom doesn’t supply.
Highlights
----------
* Empty cells are skipped – no wasted GPT calls.
* GPT‑4o mini used with a tiny disk cache (`ai_response_cache/`).
* Brand → logo URLs hard‑coded below (update when media library changes).
"""
# ---------------------------------------------------------------------------
# Gradio JSON‑schema helper hot‑patch (bool schema bug)
# ---------------------------------------------------------------------------
_original = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None):
if isinstance(schema, bool): # gradio 4.29 bug
return "any"
return _original(schema, defs)
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
# ---------------------------------------------------------------------------
# Tiny disk cache for OpenAI responses
# ---------------------------------------------------------------------------
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
def _cache_path(prompt: str) -> Path:
return CACHE_DIR / f"{hashlib.md5(prompt.encode()).hexdigest()}.json"
def _get_cached(prompt: str):
try:
return json.loads(_cache_path(prompt).read_text("utf-8"))["response"]
except Exception:
return None
def _set_cache(prompt: str, rsp: str):
try:
_cache_path(prompt).write_text(json.dumps({"prompt": prompt, "response": rsp}), "utf-8")
except Exception:
pass
# ---------------------------------------------------------------------------
# Async GPT helpers
# ---------------------------------------------------------------------------
async def _gpt(client: openai.AsyncOpenAI, prompt: str) -> str:
cached = _get_cached(prompt)
if cached is not None:
return cached
try:
cmp = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0,
)
txt = cmp.choices[0].message.content
except Exception as e:
txt = f"Error: {e}"
_set_cache(prompt, txt)
return txt
async def _batch(texts: list[str], instruction: str) -> list[str]:
"""Return len(texts) list. Blank inputs remain blank."""
res = ["" for _ in texts]
idx, prompts = [], []
for i, t in enumerate(texts):
if isinstance(t, str) and t.strip():
idx.append(i); prompts.append(f"{instruction}\n\nText: {t}")
if not prompts:
return res
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
tasks = [_gpt(client, p) for p in prompts]
outs = await asyncio.gather(*tasks)
for k, v in enumerate(outs):
res[idx[k]] = v
return res
# ---------------------------------------------------------------------------
# Main converter
# ---------------------------------------------------------------------------
def process_woocommerce_data_in_memory(netcom_file):
"""Return BytesIO of Woo CSV."""
# Brand logos
brand_logo_map = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
}
default_prereq = (
"No specific prerequisites are required for this course. "
"Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
)
# Load NetCom CSV
df = pd.read_csv(netcom_file.name, encoding="latin1"); df.columns = df.columns.str.strip()
def _col(opts):
return next((c for c in opts if c in df.columns), None)
# Column aliases
col_desc = _col(["Description", "Decription"])
col_obj = _col(["Objectives", "objectives"])
col_pre = _col(["RequiredPrerequisite", "Required Pre-requisite"])
col_out = _col(["Outline"])
col_dur = _col(["Duration"])
col_sid = _col(["Course SID", "Course SID"])
if col_dur is None:
df["Duration"] = ""; col_dur = "Duration"
# AI prep lists
descs, objs, pres, outs = (df.get(c, pd.Series([""]*len(df))).fillna("").tolist() for c in (col_desc, col_obj, col_pre, col_out))
loop = asyncio.new_event_loop(); asyncio.set_event_loop(loop)
short_d, long_d, fmt_obj, fmt_out = loop.run_until_complete(asyncio.gather(
_batch(descs, "Create a concise 250-character summary of this course description:"),
_batch(descs, "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
_batch(objs, "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':"),
_batch(outs, "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':"),
)); loop.close()
fmt_pre = [default_prereq if not str(p).strip() else asyncio.run(_batch([p], "Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in pres]
# Attach processed cols
df["Short_Description"] = short_d; df["Condensed_Description"] = long_d
df["Formatted_Objectives"] = fmt_obj; df["Formatted_Agenda"] = fmt_out; df["Formatted_Prerequisites"] = fmt_pre
# Dates
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
df_sorted = df.sort_values(["Course ID", "Course Start Date"])
date_agg = df_sorted.groupby("Course ID")["Date_fmt"].apply(lambda s: ",".join(s.dropna().unique())).reset_index(name="Aggregated_Dates")
time_agg = df_sorted.groupby("Course ID").apply(lambda g: ",".join(f"{st}-{et} {tz}" for st, et, tz in zip(g["Course Start Time"], g["Course End Time"], g["Time Zone"]))).reset_index(name="Aggregated_Times")
parents = df_sorted.drop_duplicates("Course ID").merge(date_agg).merge(time_agg)
# Parent rows
woo_parent = pd.DataFrame({
"Type": "variable",
"SKU": parents["Course ID"],
"Name": parents["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": parents["Short_Description"],
"Description": parents["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Stock": 1,
"Sold individually?": 1,
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": parents["Vendor"].map(brand_logo_map).fillna(""),
"Parent": "",
"Brands": parents["Vendor"],
# Attributes
"Attribute 1 name": "Date", "Attribute 1 value(s)": parents["Aggregated_Dates"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
"Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
"Attribute 3 name": "Time", "Attribute 3 value(s)": parents["Aggregated_Times"], "Attribute 3 visible": "visible", "Attribute 3 global": 1,
# Meta
"Meta: outline": parents["Formatted_Agenda"], "Meta: days": parents[col_dur], "Meta: location": "Virtual",
"Meta: overview": parents["Target Audience"], "Meta: objectives": parents["Formatted_Objectives"],
"Meta: prerequisites": parents["Formatted_Prerequisites"], "Meta: agenda": parents["Formatted_Agenda"],
})
# Child rows
woo_child = pd.DataFrame({
"Type": "variation, virtual",
"SKU": df_sorted[col_sid].astype(str).str.strip(),
"Name": df_sorted["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": df_sorted["Short_Description"],
"Description": df_sorted["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Stock": 1,
"Sold individually?": 1,
"Regular price": df_sorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": df_sorted["Vendor"].map(brand_logo_map).fillna(""),
"Parent": df_sorted["Course ID"],
"Brands": df_sorted["Vendor"],
"Attribute 1 name": "Date", "Attribute 1 value(s)": df_sorted["Date_fmt"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
"Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
"Attribute 3 name": "Time", "Attribute 3 value(s)": df_sorted.apply(lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}", axis=1), "Attribute 3 visible": "visible", "Attribute 3 global": 1,
"Meta: outline": df_sorted["Formatted_Agenda"], "Meta: days": df_sorted[col_dur], "Meta: location": "Virtual",
"Meta: overview": df_sorted["Target Audience"], "Meta: objectives": df_sorted["Formatted_Objectives"],
"Meta: prerequisites": df_sorted["Formatted_Prerequisites"], "Meta: agenda": df_sorted["Formatted_Agenda"],
})
# Combine & order
combined = pd.concat([woo_parent, woo_child], ignore_index=True)
column_order = [
"Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands", "Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"
]
combined = combined[column_order]
buf = BytesIO(); combined.to_csv(buf, index=False, encoding="utf-8-sig"); buf.seek(0); return buf
# ---------------------------------------------------------------------------
# Gradio wrapper
# ---------------------------------------------------------------------------
def process_file(upload):
return process_woocommerce_data_in_memory(upload)
interface = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom → WooCommerce CSV Processor",
description="Upload a NetCom Reseller Schedule CSV to generate a WooCommerce‑import CSV (Try 1 schema).",
analytics_enabled=False,
)
if __name__ == "__main__":
if not os.getenv("OPENAI_API_KEY"):
print("⚠️ OPENAI_API_KEY not set – AI paraphrasing will error out")
interface.launch()
|