codys12's picture
Update app.py
90e73d9 verified
raw
history blame
9.72 kB
import gradio as gr
import pandas as pd
import tempfile
import os
import json
import hashlib
import asyncio
from io import BytesIO
from pathlib import Path
import openai
import gradio_client.utils
"""NetCom → WooCommerce transformer (Try 1 schema)
=================================================
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
Fixes vs last run
-----------------
* Output written to a **temporary file path** (Gradio BytesIO bug fixed).
* **Excel upload** support.
* **Pandas future‑warning** silenced (`group_keys=False`).
"""
# -------- Gradio bool‑schema hot‑patch --------------------------------------
_original = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None):
if isinstance(schema, bool):
return "any"
return _original(schema, defs)
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
# -------- Tiny disk cache ----------------------------------------------------
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
def _cache_path(p: str):
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
def _get_cached(p: str):
try:
return json.loads(_cache_path(p).read_text("utf-8"))["response"]
except Exception:
return None
def _set_cache(p: str, r: str):
try:
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
except Exception:
pass
# -------- Async GPT helpers --------------------------------------------------
async def _gpt(client, prompt):
c = _get_cached(prompt)
if c is not None:
return c
try:
msg = await client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0)
text = msg.choices[0].message.content
except Exception as e:
text = f"Error: {e}"
_set_cache(prompt, text)
return text
async def _batch(lst, instr):
out = ["" for _ in lst]; idx,prompts=[],[]
for i,t in enumerate(lst):
if isinstance(t,str) and t.strip(): idx.append(i); prompts.append(f"{instr}\n\nText: {t}")
if not prompts: return out
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
res = await asyncio.gather(*[_gpt(client,p) for p in prompts])
for j,val in enumerate(res): out[idx[j]] = val
return out
# -------- Core converter -----------------------------------------------------
def _read(path: str):
return pd.read_excel(path) if path.lower().endswith((".xlsx",".xls")) else pd.read_csv(path, encoding="latin1")
def convert(path: str) -> BytesIO:
logos = {"Amazon Web Services":"/wp-content/uploads/2025/04/aws.png","Cisco":"/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp","Microsoft":"/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png","Google Cloud":"/wp-content/uploads/2025/04/Google_Cloud.png","EC Council":"/wp-content/uploads/2025/04/Ec_Council.png","ITIL":"/wp-content/uploads/2025/04/ITIL.webp","PMI":"/wp-content/uploads/2025/04/PMI.png","Comptia":"/wp-content/uploads/2025/04/Comptia.png","Autodesk":"/wp-content/uploads/2025/04/autodesk.png","ISC2":"/wp-content/uploads/2025/04/ISC2.png","AICerts":"/wp-content/uploads/2025/04/aicerts-logo-1.png"}
default_pre = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
df = _read(path); df.columns = df.columns.str.strip()
c = lambda *o: next((x for x in o if x in df.columns), None)
dcol, ocol, pcol, acol, dur, sid = c("Description","Decription"), c("Objectives","objectives"), c("RequiredPrerequisite","Required Pre-requisite"), c("Outline"), c("Duration"), c("Course SID","Course SID")
if dur is None: df["Duration"]=""; dur="Duration"
loop=asyncio.new_event_loop(); asyncio.set_event_loop(loop)
sdesc, ldesc, fobj, fout = loop.run_until_complete(asyncio.gather(
_batch(df.get(dcol,"").fillna("").tolist(), "Create a concise 250-character summary of this course description:"),
_batch(df.get(dcol,"").fillna("").tolist(), "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
_batch(df.get(ocol,"").fillna("").tolist(), "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':") ,
_batch(df.get(acol,"").fillna("").tolist(), "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':")))
loop.close()
fpre=[default_pre if not str(p).strip() else asyncio.run(_batch([p],"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in df.get(pcol,"").fillna("").tolist()]
df["Short_Description"],df["Condensed_Description"],df["Formatted_Objectives"],df["Formatted_Agenda"],df["Formatted_Prerequisites"] = sdesc,ldesc,fobj,fout,fpre
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
dsorted=df.sort_values(["Course ID","Course Start Date"])
d_agg = dsorted.groupby("Course ID")["Date_fmt"].apply(lambda s: ",".join(s.dropna().unique())).reset_index(name="Dates")
t_agg = dsorted.groupby("Course ID",group_keys=False).apply(lambda g: ",".join(f"{st}-{et} {tz}" for st,et,tz in zip(g["Course Start Time"],g["Course End Time"],g["Time Zone"]))).reset_index(name="Times")
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
parent = pd.DataFrame({
"Type":"variable","SKU":parents["Course ID"],"Name":parents["Course Name"],"Published":1,"Visibility in catalog":"visible","Short description":parents["Short_Description"],"Description":parents["Condensed_Description"],"Tax status":"taxable","In stock?":1,"Stock":1,"Sold individually?":1,"Regular price":parents["SRP Pricing"].replace("[\\$,]","",regex=True),"Categories":"courses","Images":parents["Vendor"].map(logos).fillna(""),"Parent":"","Brands":parents["Vendor"],"Attribute 1 name":"Date","Attribute 1 value(s)":parents["Dates"],"Attribute 1 visible":"visible","Attribute 1 global":1,"Attribute 2 name":"Location","Attribute 2 value(s)":"Virtual","Attribute 2 visible":"visible","Attribute 2 global":1,"Attribute 3 name":"Time","Attribute 3 value(s)":parents["Times"],"Attribute 3 visible":"visible","Attribute 3 global":1,"Meta: outline":parents["Formatted_Agenda"],"Meta: days":parents[dur],"Meta: location":"Virtual","Meta: overview":parents["Target Audience"],"Meta: objectives":parents["Formatted_Objectives"],"Meta: prerequisites":parents["Formatted_Prerequisites"],"Meta: agenda":parents["Formatted_Agenda"]})
child = pd.DataFrame({
"Type":"variation, virtual","SKU":dsorted[sid].astype(str).str.strip(),"Name":dsorted["Course Name"],"Published":1,"Visibility in catalog":"visible","Short description":dsorted["Short_Description"],"Description":dsorted["Condensed_Description"],"Tax status":"taxable","In stock?":1,"Stock":1,"Sold individually?":1,"Regular price":dsorted["SRP Pricing"].replace("[\\$,]","",regex=True),"Categories":"courses","Images":dsorted["Vendor"].map(logos).fillna(""),"Parent":dsorted["Course ID"],"Brands":dsorted["Vendor"],"Attribute 1 name":"Date","Attribute 1 value(s)":dsorted["Date_fmt"],"Attribute 1 visible":"visible","Attribute 1 global":1,"Attribute 2 name":"Location","Attribute 2 value(s)":"Virtual","Attribute 2 visible":"visible","Attribute 2 global":1,"Attribute 3 name":"Time","Attribute 3 value(s)":dsorted.apply(lambda r:f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",axis=1),"Attribute 3 visible":"visible","Attribute 3 global":1,"Meta: outline":dsorted["Formatted_Agenda"],"Meta: days":dsorted[dur],"Meta: location":"Virtual","Meta: overview":dsorted["Target Audience"],"Meta: objectives":dsorted["Formatted_Objectives"],"Meta: prerequisites":dsorted["Formatted_Prerequisites"],"Meta: agenda":dsorted["Formatted_Agenda"]})
all_rows = pd.concat([parent,child],ignore_index=True)
order=["Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands","Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"]
out=BytesIO(); all_rows[order].to_csv(out,index=False,encoding="utf-8-sig"); out.seek(0); return out
# -------- Gradio wrappers ----------------------------------------------------
def process_file(upload):
csv_bytes = convert(upload.name)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
tmp.write(csv_bytes.getvalue()); path = tmp.name
return path
ui = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv",".xlsx",".xls"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom → WooCommerce CSV Processor",
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 1‑formatted WooCommerce CSV.",
analytics_enabled=False,
)
if __name__ == "__main__":
if not os.getenv("OPENAI_API_KEY"):
print("⚠️ OPENAI_API_KEY not set – AI features will error")
ui.launch()