codys12's picture
Update app.py
b0ead86 verified
raw
history blame
11.8 kB
import gradio as gr
import pandas as pd
import tempfile
import os
import json
import hashlib
import asyncio
from io import BytesIO
from pathlib import Path
import openai
import gradio_client.utils
"""NetCom → WooCommerce transformer (Try 1 schema)
=================================================
Drop a *Reseller Schedule* CSV and get back a WooCommerce‑ready CSV that matches
`Try 1 - WooCommerce_Mapped_Data__Fixed_Attributes_and_Agenda_.csv` exactly –
including `Stock` and `Sold individually?` columns that NetCom doesn’t supply.
Highlights
----------
* Empty cells are skipped – no wasted GPT calls.
* GPT‑4o mini used with a tiny disk cache (`ai_response_cache/`).
* Brand → logo URLs hard‑coded below (update when media library changes).
"""
# ---------------------------------------------------------------------------
# Gradio JSON‑schema helper hot‑patch (bool schema bug)
# ---------------------------------------------------------------------------
_original = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None):
if isinstance(schema, bool): # gradio 4.29 bug
return "any"
return _original(schema, defs)
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
# ---------------------------------------------------------------------------
# Tiny disk cache for OpenAI responses
# ---------------------------------------------------------------------------
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
def _cache_path(prompt: str) -> Path:
return CACHE_DIR / f"{hashlib.md5(prompt.encode()).hexdigest()}.json"
def _get_cached(prompt: str):
try:
return json.loads(_cache_path(prompt).read_text("utf-8"))["response"]
except Exception:
return None
def _set_cache(prompt: str, rsp: str):
try:
_cache_path(prompt).write_text(json.dumps({"prompt": prompt, "response": rsp}), "utf-8")
except Exception:
pass
# ---------------------------------------------------------------------------
# Async GPT helpers
# ---------------------------------------------------------------------------
async def _gpt(client: openai.AsyncOpenAI, prompt: str) -> str:
cached = _get_cached(prompt)
if cached is not None:
return cached
try:
cmp = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0,
)
txt = cmp.choices[0].message.content
except Exception as e:
txt = f"Error: {e}"
_set_cache(prompt, txt)
return txt
async def _batch(texts: list[str], instruction: str) -> list[str]:
"""Return len(texts) list. Blank inputs remain blank."""
res = ["" for _ in texts]
idx, prompts = [], []
for i, t in enumerate(texts):
if isinstance(t, str) and t.strip():
idx.append(i); prompts.append(f"{instruction}\n\nText: {t}")
if not prompts:
return res
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
tasks = [_gpt(client, p) for p in prompts]
outs = await asyncio.gather(*tasks)
for k, v in enumerate(outs):
res[idx[k]] = v
return res
# ---------------------------------------------------------------------------
# Main converter
# ---------------------------------------------------------------------------
def process_woocommerce_data_in_memory(netcom_file):
"""Return BytesIO of Woo CSV."""
# Brand logos
brand_logo_map = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
}
default_prereq = (
"No specific prerequisites are required for this course. "
"Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
)
# Load NetCom CSV
df = pd.read_csv(netcom_file.name, encoding="latin1"); df.columns = df.columns.str.strip()
def _col(opts):
return next((c for c in opts if c in df.columns), None)
# Column aliases
col_desc = _col(["Description", "Decription"])
col_obj = _col(["Objectives", "objectives"])
col_pre = _col(["RequiredPrerequisite", "Required Pre-requisite"])
col_out = _col(["Outline"])
col_dur = _col(["Duration"])
col_sid = _col(["Course SID", "Course SID"])
if col_dur is None:
df["Duration"] = ""; col_dur = "Duration"
# AI prep lists
descs, objs, pres, outs = (df.get(c, pd.Series([""]*len(df))).fillna("").tolist() for c in (col_desc, col_obj, col_pre, col_out))
loop = asyncio.new_event_loop(); asyncio.set_event_loop(loop)
short_d, long_d, fmt_obj, fmt_out = loop.run_until_complete(asyncio.gather(
_batch(descs, "Create a concise 250-character summary of this course description:"),
_batch(descs, "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
_batch(objs, "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':"),
_batch(outs, "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':"),
)); loop.close()
fmt_pre = [default_prereq if not str(p).strip() else asyncio.run(_batch([p], "Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in pres]
# Attach processed cols
df["Short_Description"] = short_d; df["Condensed_Description"] = long_d
df["Formatted_Objectives"] = fmt_obj; df["Formatted_Agenda"] = fmt_out; df["Formatted_Prerequisites"] = fmt_pre
# Dates
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
df_sorted = df.sort_values(["Course ID", "Course Start Date"])
date_agg = df_sorted.groupby("Course ID")["Date_fmt"].apply(lambda s: ",".join(s.dropna().unique())).reset_index(name="Aggregated_Dates")
time_agg = df_sorted.groupby("Course ID").apply(lambda g: ",".join(f"{st}-{et} {tz}" for st, et, tz in zip(g["Course Start Time"], g["Course End Time"], g["Time Zone"]))).reset_index(name="Aggregated_Times")
parents = df_sorted.drop_duplicates("Course ID").merge(date_agg).merge(time_agg)
# Parent rows
woo_parent = pd.DataFrame({
"Type": "variable",
"SKU": parents["Course ID"],
"Name": parents["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": parents["Short_Description"],
"Description": parents["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Stock": 1,
"Sold individually?": 1,
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": parents["Vendor"].map(brand_logo_map).fillna(""),
"Parent": "",
"Brands": parents["Vendor"],
# Attributes
"Attribute 1 name": "Date", "Attribute 1 value(s)": parents["Aggregated_Dates"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
"Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
"Attribute 3 name": "Time", "Attribute 3 value(s)": parents["Aggregated_Times"], "Attribute 3 visible": "visible", "Attribute 3 global": 1,
# Meta
"Meta: outline": parents["Formatted_Agenda"], "Meta: days": parents[col_dur], "Meta: location": "Virtual",
"Meta: overview": parents["Target Audience"], "Meta: objectives": parents["Formatted_Objectives"],
"Meta: prerequisites": parents["Formatted_Prerequisites"], "Meta: agenda": parents["Formatted_Agenda"],
})
# Child rows
woo_child = pd.DataFrame({
"Type": "variation, virtual",
"SKU": df_sorted[col_sid].astype(str).str.strip(),
"Name": df_sorted["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": df_sorted["Short_Description"],
"Description": df_sorted["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Stock": 1,
"Sold individually?": 1,
"Regular price": df_sorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": df_sorted["Vendor"].map(brand_logo_map).fillna(""),
"Parent": df_sorted["Course ID"],
"Brands": df_sorted["Vendor"],
"Attribute 1 name": "Date", "Attribute 1 value(s)": df_sorted["Date_fmt"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
"Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
"Attribute 3 name": "Time", "Attribute 3 value(s)": df_sorted.apply(lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}", axis=1), "Attribute 3 visible": "visible", "Attribute 3 global": 1,
"Meta: outline": df_sorted["Formatted_Agenda"], "Meta: days": df_sorted[col_dur], "Meta: location": "Virtual",
"Meta: overview": df_sorted["Target Audience"], "Meta: objectives": df_sorted["Formatted_Objectives"],
"Meta: prerequisites": df_sorted["Formatted_Prerequisites"], "Meta: agenda": df_sorted["Formatted_Agenda"],
})
# Combine & order
combined = pd.concat([woo_parent, woo_child], ignore_index=True)
column_order = [
"Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands", "Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"
]
combined = combined[column_order]
buf = BytesIO(); combined.to_csv(buf, index=False, encoding="utf-8-sig"); buf.seek(0); return buf
# ---------------------------------------------------------------------------
# Gradio wrapper
# ---------------------------------------------------------------------------
def process_file(upload):
return process_woocommerce_data_in_memory(upload)
interface = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom → WooCommerce CSV Processor",
description="Upload a NetCom Reseller Schedule CSV to generate a WooCommerce‑import CSV (Try 1 schema).",
analytics_enabled=False,
)
if __name__ == "__main__":
if not os.getenv("OPENAI_API_KEY"):
print("⚠️ OPENAI_API_KEY not set – AI paraphrasing will error out")
interface.launch()