Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from io import BytesIO | |
def process_woocommerce_data_in_memory(netcom_file): | |
""" | |
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format, | |
and returns the resulting CSV as bytes, suitable for download. | |
""" | |
# Define the brand-to-logo mapping | |
brand_logo_map = { | |
"Amazon Web Services": "https://devthe.tech/wp-content/uploads/2025/02/aws.png", | |
"Cisco": "https://devthe.tech/wp-content/uploads/2025/02/cisco-e1738593292198-1.webp", | |
"Microsoft": "https://devthe.tech/wp-content/uploads/2025/01/Microsoft-e1737494120985-1.png" | |
} | |
# 1. Read the uploaded CSV into a DataFrame (Gradio provides a tempfile-like object) | |
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1') | |
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names | |
# 2. Create aggregated dates and times for each Course ID | |
date_agg = ( | |
netcom_df.groupby('Course ID')['Course Start Date'] | |
.apply(lambda x: ','.join(x.astype(str).unique())) | |
.reset_index(name='Aggregated_Dates') | |
) | |
time_agg = ( | |
netcom_df.groupby('Course ID') | |
.apply( | |
lambda df: ','.join( | |
f"{st}-{et} {tz}" | |
for st, et, tz in zip(df['Course Start Time'], | |
df['Course End Time'], | |
df['Time Zone']) | |
) | |
) | |
.reset_index(name='Aggregated_Times') | |
) | |
# 3. Extract unique parent products from the NetCom data | |
parent_products = netcom_df.drop_duplicates(subset=['Course ID']) | |
# 4. Merge aggregated dates and times into the parent product DataFrame | |
parent_products = parent_products.merge(date_agg, on='Course ID', how='left') | |
parent_products = parent_products.merge(time_agg, on='Course ID', how='left') | |
# 5. Create the parent (variable) product DataFrame | |
woo_parent_df = pd.DataFrame({ | |
'Type': 'variable', | |
'SKU': parent_products['Course ID'], | |
'Name': parent_products['Course Name'], | |
'Published': 1, | |
'Visibility in catalog': 'visible', | |
'Short description': parent_products['Decription'], | |
'Description': parent_products['Decription'], | |
'Tax status': 'taxable', | |
'In stock?': 1, | |
'Stock': 1, | |
'Sold individually?': 1, | |
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True), | |
'Categories': 'courses', | |
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''), | |
'Parent': '', | |
'Brands': parent_products['Vendor'], | |
'Attribute 1 name': 'Date', | |
'Attribute 1 value(s)': parent_products['Aggregated_Dates'], | |
'Attribute 1 visible': 'visible', | |
'Attribute 1 global': 1, | |
'Attribute 2 name': 'Location', | |
'Attribute 2 value(s)': 'Virtual', | |
'Attribute 2 visible': 'visible', | |
'Attribute 2 global': 1, | |
'Attribute 3 name': 'Time', | |
'Attribute 3 value(s)': parent_products['Aggregated_Times'], | |
'Attribute 3 visible': 'visible', | |
'Attribute 3 global': 1, | |
'Meta: outline': parent_products['Outline'], | |
'Meta: days': parent_products['Duration'], | |
'Meta: location': 'Virtual', | |
'Meta: overview': parent_products['Target Audience'], | |
'Meta: objectives': parent_products['Objectives'], | |
'Meta: prerequisites': parent_products['RequiredPrerequisite'].fillna(''), | |
'Meta: agenda': parent_products['Outline'] # Agenda now copies the outline | |
}) | |
# 6. Create the child (variation) product DataFrame | |
woo_child_df = pd.DataFrame({ | |
'Type': 'variation, virtual', | |
'SKU': netcom_df['Course SID'], | |
'Name': netcom_df['Course Name'], | |
'Published': 1, | |
'Visibility in catalog': 'visible', | |
'Short description': netcom_df['Decription'], | |
'Description': netcom_df['Decription'], | |
'Tax status': 'taxable', | |
'In stock?': 1, | |
'Stock': 1, | |
'Sold individually?': 1, | |
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True), | |
'Categories': 'courses', | |
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''), | |
'Parent': netcom_df['Course ID'], | |
'Brands': netcom_df['Vendor'], | |
'Attribute 1 name': 'Date', | |
'Attribute 1 value(s)': netcom_df['Course Start Date'], | |
'Attribute 1 visible': 'visible', | |
'Attribute 1 global': 1, | |
'Attribute 2 name': 'Location', | |
'Attribute 2 value(s)': 'Virtual', | |
'Attribute 2 visible': 'visible', | |
'Attribute 2 global': 1, | |
'Attribute 3 name': 'Time', | |
'Attribute 3 value(s)': netcom_df.apply( | |
lambda row: f"{row['Course Start Time']}-{row['Course End Time']} {row['Time Zone']}", axis=1 | |
), | |
'Attribute 3 visible': 'visible', | |
'Attribute 3 global': 1, | |
'Meta: outline': netcom_df['Outline'], | |
'Meta: days': netcom_df['Duration'], | |
'Meta: location': 'Virtual', | |
'Meta: overview': netcom_df['Target Audience'], | |
'Meta: objectives': netcom_df['Objectives'], | |
'Meta: prerequisites': netcom_df['RequiredPrerequisite'].fillna(''), | |
'Meta: agenda': netcom_df['Outline'] # Agenda now copies the outline | |
}) | |
# 7. Combine parent and child data | |
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True) | |
# 8. Define the desired column order (matching WooCommerce import format) | |
column_order = [ | |
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog', | |
'Short description', 'Description', 'Tax status', 'In stock?', | |
'Stock', 'Sold individually?', 'Regular price', 'Categories', 'Images', | |
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible', | |
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible', | |
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible', | |
'Attribute 3 global', 'Meta: outline', 'Meta: days', 'Meta: location', 'Meta: overview', | |
'Meta: objectives', 'Meta: prerequisites', 'Meta: agenda' | |
] | |
woo_final_df = woo_final_df[column_order] | |
# 9. Convert the final DataFrame to CSV in memory | |
output_buffer = BytesIO() | |
woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig') | |
output_buffer.seek(0) | |
return output_buffer | |
def process_file_and_return_csv(uploaded_file): | |
""" | |
Gradio wrapper function that: | |
- Takes the uploaded file, | |
- Processes it, | |
- Returns a dictionary that Gradio recognizes as a downloadable file. | |
""" | |
processed_csv_io = process_woocommerce_data_in_memory(uploaded_file) | |
# Return a dict with the keys Gradio expects for a File output | |
return { | |
"name": "WooCommerce_Mapped_Data.csv", | |
"data": processed_csv_io.getvalue() | |
} | |
######################### | |
# Gradio App # | |
######################### | |
app = gr.Interface( | |
fn=process_file_and_return_csv, | |
inputs=gr.File(label="Upload NetCom CSV", file_types=["text", "csv"]), | |
outputs=gr.File(label="Download WooCommerce CSV"), | |
title="NetCom to WooCommerce CSV Processor", | |
description="Upload your NetCom Reseller Schedule CSV to generate the WooCommerce import-ready CSV." | |
) | |
if __name__ == "__main__": | |
app.launch() | |