Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,34 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import asyncio
|
|
|
|
|
|
|
|
|
8 |
from io import BytesIO
|
9 |
from pathlib import Path
|
10 |
-
import openai
|
11 |
-
import gradio_client.utils
|
12 |
-
|
13 |
-
"""NetCom → WooCommerce transformer (Try 1 schema)
|
14 |
-
=================================================
|
15 |
-
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
* **Pandas future‑warning** silenced (`group_keys=False`).
|
22 |
-
"""
|
23 |
|
24 |
# -------- Gradio bool‑schema hot‑patch --------------------------------------
|
25 |
_original = gradio_client.utils._json_schema_to_python_type
|
26 |
|
27 |
-
def _fixed_json_schema_to_python_type(schema, defs=None):
|
28 |
if isinstance(schema, bool):
|
29 |
return "any"
|
30 |
return _original(schema, defs)
|
@@ -32,101 +36,269 @@ def _fixed_json_schema_to_python_type(schema, defs=None):
|
|
32 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
33 |
|
34 |
# -------- Tiny disk cache ----------------------------------------------------
|
35 |
-
CACHE_DIR = Path("ai_response_cache")
|
|
|
36 |
|
37 |
-
def _cache_path(p: str):
|
38 |
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
39 |
|
40 |
-
def _get_cached(p: str):
|
41 |
try:
|
42 |
-
return json.loads(_cache_path(p).read_text("utf-8"))[
|
43 |
except Exception:
|
44 |
return None
|
45 |
|
46 |
-
def _set_cache(p: str, r: str):
|
47 |
try:
|
48 |
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
49 |
except Exception:
|
50 |
pass
|
51 |
|
52 |
# -------- Async GPT helpers --------------------------------------------------
|
53 |
-
async def
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
try:
|
58 |
-
msg = await client.chat.completions.create(
|
|
|
|
|
|
|
|
|
59 |
text = msg.choices[0].message.content
|
60 |
-
except Exception as
|
61 |
-
text = f"Error: {
|
|
|
62 |
_set_cache(prompt, text)
|
63 |
return text
|
64 |
|
65 |
-
async def
|
66 |
-
|
67 |
-
for
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
return out
|
74 |
|
75 |
# -------- Core converter -----------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
def
|
78 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def convert(path: str) -> BytesIO:
|
81 |
-
logos = {
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
_batch(df.get(dcol,"").fillna("").tolist(), "Create a concise 250-character summary of this course description:"),
|
92 |
-
_batch(df.get(dcol,"").fillna("").tolist(), "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
|
93 |
-
_batch(df.get(ocol,"").fillna("").tolist(), "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':") ,
|
94 |
-
_batch(df.get(acol,"").fillna("").tolist(), "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':")))
|
95 |
-
loop.close()
|
96 |
-
fpre=[default_pre if not str(p).strip() else asyncio.run(_batch([p],"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in df.get(pcol,"").fillna("").tolist()]
|
97 |
|
98 |
-
|
|
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
101 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
106 |
|
|
|
107 |
parent = pd.DataFrame({
|
108 |
-
"Type":"variable",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
child = pd.DataFrame({
|
110 |
-
"Type":"variation, virtual",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
all_rows = pd.concat([parent,child],ignore_index=True)
|
113 |
-
order=[
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
# -------- Gradio wrappers ----------------------------------------------------
|
117 |
|
118 |
-
def process_file(upload):
|
119 |
csv_bytes = convert(upload.name)
|
120 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
121 |
-
tmp.write(csv_bytes.getvalue())
|
|
|
122 |
return path
|
123 |
|
124 |
ui = gr.Interface(
|
125 |
fn=process_file,
|
126 |
-
inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv",".xlsx",".xls"]),
|
127 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
128 |
-
title="NetCom → WooCommerce CSV Processor",
|
129 |
-
description="Upload NetCom schedule (.csv/.xlsx) to get the Try
|
130 |
analytics_enabled=False,
|
131 |
)
|
132 |
|
|
|
1 |
+
"""NetCom → WooCommerce transformer (Try 2 schema — cleaned async)
|
2 |
+
=============================================================
|
3 |
+
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
4 |
+
|
5 |
+
Changes vs Try 1
|
6 |
+
----------------
|
7 |
+
* Use **one** event‑loop via `asyncio.run()` — no manual `new_event_loop()` / `loop.close()` gymnastics.
|
8 |
+
* **One** shared `openai.AsyncOpenAI` client, properly closed with an `async with` block.
|
9 |
+
* Fixed pandas future‑warning by adding `include_groups=False`.
|
10 |
+
* Same Gradio interface, caching, and JSON‑schema hot‑patch as before.
|
11 |
+
"""
|
12 |
+
|
13 |
+
from __future__ import annotations
|
14 |
+
|
15 |
import asyncio
|
16 |
+
import hashlib
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import tempfile
|
20 |
from io import BytesIO
|
21 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
import gradio as gr
|
24 |
+
import gradio_client.utils
|
25 |
+
import openai
|
26 |
+
import pandas as pd
|
|
|
|
|
27 |
|
28 |
# -------- Gradio bool‑schema hot‑patch --------------------------------------
|
29 |
_original = gradio_client.utils._json_schema_to_python_type
|
30 |
|
31 |
+
def _fixed_json_schema_to_python_type(schema, defs=None): # type: ignore
|
32 |
if isinstance(schema, bool):
|
33 |
return "any"
|
34 |
return _original(schema, defs)
|
|
|
36 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
37 |
|
38 |
# -------- Tiny disk cache ----------------------------------------------------
|
39 |
+
CACHE_DIR = Path("ai_response_cache")
|
40 |
+
CACHE_DIR.mkdir(exist_ok=True)
|
41 |
|
42 |
+
def _cache_path(p: str) -> Path:
|
43 |
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
44 |
|
45 |
+
def _get_cached(p: str) -> str | None:
|
46 |
try:
|
47 |
+
return json.loads(_cache_path(p).read_text("utf-8"))['response']
|
48 |
except Exception:
|
49 |
return None
|
50 |
|
51 |
+
def _set_cache(p: str, r: str) -> None:
|
52 |
try:
|
53 |
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
54 |
except Exception:
|
55 |
pass
|
56 |
|
57 |
# -------- Async GPT helpers --------------------------------------------------
|
58 |
+
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
59 |
+
"""Single LLM call with on‑disk response cache."""
|
60 |
+
cached = _get_cached(prompt)
|
61 |
+
if cached is not None:
|
62 |
+
return cached
|
63 |
+
|
64 |
try:
|
65 |
+
msg = await client.chat.completions.create(
|
66 |
+
model="gpt-4o-mini",
|
67 |
+
messages=[{"role": "user", "content": prompt}],
|
68 |
+
temperature=0,
|
69 |
+
)
|
70 |
text = msg.choices[0].message.content
|
71 |
+
except Exception as exc: # network or auth failure ‑ return explicit error string
|
72 |
+
text = f"Error: {exc}"
|
73 |
+
|
74 |
_set_cache(prompt, text)
|
75 |
return text
|
76 |
|
77 |
+
async def _batch_async(lst: list[str], instruction: str, client: openai.AsyncOpenAI) -> list[str]:
|
78 |
+
"""Vectorised helper — returns an output list matching *lst* length."""
|
79 |
+
out: list[str] = ["" for _ in lst]
|
80 |
+
idx, prompts = [], []
|
81 |
+
for i, txt in enumerate(lst):
|
82 |
+
if isinstance(txt, str) and txt.strip():
|
83 |
+
idx.append(i)
|
84 |
+
prompts.append(f"{instruction}\n\nText: {txt}")
|
85 |
+
# Fast‑path: nothing to do
|
86 |
+
if not prompts:
|
87 |
+
return out
|
88 |
+
|
89 |
+
# Fire off all prompts concurrently
|
90 |
+
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
|
91 |
+
for j, val in enumerate(responses):
|
92 |
+
out[idx[j]] = val
|
93 |
return out
|
94 |
|
95 |
# -------- Core converter -----------------------------------------------------
|
96 |
+
DEFAULT_PREREQ = (
|
97 |
+
"No specific prerequisites are required for this course. Basic computer literacy and "
|
98 |
+
"familiarity with fundamental concepts in the subject area are recommended for the best "
|
99 |
+
"learning experience."
|
100 |
+
)
|
101 |
+
|
102 |
+
def _read(path: str) -> pd.DataFrame:
|
103 |
+
if path.lower().endswith((".xlsx", ".xls")):
|
104 |
+
return pd.read_excel(path)
|
105 |
+
return pd.read_csv(path, encoding="latin1")
|
106 |
|
107 |
+
async def _enrich_dataframe(df: pd.DataFrame, dcol: str, ocol: str, pcol: str, acol: str) -> tuple[list[str], list[str], list[str], list[str], list[str]]:
|
108 |
+
"""Run all LLM batches concurrently and return the five enrichment columns."""
|
109 |
+
async with openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY")) as client:
|
110 |
+
# 1) Descriptions and objectives/agenda batches
|
111 |
+
sdesc, ldesc, fobj, fout = await asyncio.gather(
|
112 |
+
_batch_async(df.get(dcol, "").fillna("").tolist(),
|
113 |
+
"Create a concise 250-character summary of this course description:", client),
|
114 |
+
_batch_async(df.get(dcol, "").fillna("").tolist(),
|
115 |
+
"Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:", client),
|
116 |
+
_batch_async(df.get(ocol, "").fillna("").tolist(),
|
117 |
+
"Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':", client),
|
118 |
+
_batch_async(df.get(acol, "").fillna("").tolist(),
|
119 |
+
"Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':", client),
|
120 |
+
)
|
121 |
+
# 2) Prerequisites batch (some rows may be empty → DEFAULT_PREREQ)
|
122 |
+
prereq_raw = df.get(pcol, "").fillna("").tolist()
|
123 |
+
fpre: list[str] = []
|
124 |
+
for req in prereq_raw:
|
125 |
+
if not str(req).strip():
|
126 |
+
fpre.append(DEFAULT_PREREQ)
|
127 |
+
else:
|
128 |
+
formatted = await _batch_async([req],
|
129 |
+
"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':",
|
130 |
+
client)
|
131 |
+
fpre.append(formatted[0])
|
132 |
+
|
133 |
+
return sdesc, ldesc, fobj, fout, fpre
|
134 |
|
135 |
def convert(path: str) -> BytesIO:
|
136 |
+
logos = {
|
137 |
+
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
|
138 |
+
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
139 |
+
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
140 |
+
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
|
141 |
+
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
|
142 |
+
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
|
143 |
+
"PMI": "/wp-content/uploads/2025/04/PMI.png",
|
144 |
+
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
|
145 |
+
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
|
146 |
+
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
|
147 |
+
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
|
148 |
+
}
|
149 |
+
|
150 |
+
df = _read(path)
|
151 |
+
df.columns = df.columns.str.strip()
|
152 |
+
|
153 |
+
# Helper to locate first existing column name from a list of candidates
|
154 |
+
first_col = lambda *candidates: next((c for c in candidates if c in df.columns), None)
|
155 |
|
156 |
+
dcol = first_col("Description", "Decription")
|
157 |
+
ocol = first_col("Objectives", "objectives")
|
158 |
+
pcol = first_col("RequiredPrerequisite", "Required Pre-requisite")
|
159 |
+
acol = first_col("Outline")
|
160 |
+
dur = first_col("Duration") or "Duration"
|
161 |
+
sid = first_col("Course SID", "Course SID")
|
162 |
|
163 |
+
if dur not in df.columns:
|
164 |
+
df[dur] = "" # create empty Duration col if missing
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
# ---------- LLM enrichment (async) -------------------------------------
|
167 |
+
sdesc, ldesc, fobj, fout, fpre = asyncio.run(_enrich_dataframe(df, dcol, ocol, pcol, acol))
|
168 |
|
169 |
+
df["Short_Description"] = sdesc
|
170 |
+
df["Condensed_Description"] = ldesc
|
171 |
+
df["Formatted_Objectives"] = fobj
|
172 |
+
df["Formatted_Agenda"] = fout
|
173 |
+
df["Formatted_Prerequisites"] = fpre
|
174 |
+
|
175 |
+
# ---------- Schedule aggregation --------------------------------------
|
176 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
177 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
178 |
+
|
179 |
+
dsorted = df.sort_values(["Course ID", "Course Start Date"])
|
180 |
+
d_agg = (
|
181 |
+
dsorted
|
182 |
+
.groupby("Course ID")["Date_fmt"]
|
183 |
+
.apply(lambda s: ",".join(s.dropna().unique()))
|
184 |
+
.reset_index(name="Dates")
|
185 |
+
)
|
186 |
+
t_agg = (
|
187 |
+
dsorted
|
188 |
+
.groupby("Course ID", group_keys=False, include_groups=False)
|
189 |
+
.apply(lambda g: ",".join(f"{st}-{et} {tz}" for st, et, tz in zip(g["Course Start Time"], g["Course End Time"], g["Time Zone"])))
|
190 |
+
.reset_index(name="Times")
|
191 |
+
)
|
192 |
+
|
193 |
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
194 |
|
195 |
+
# ---------- Parent / child product rows --------------------------------
|
196 |
parent = pd.DataFrame({
|
197 |
+
"Type": "variable",
|
198 |
+
"SKU": parents["Course ID"],
|
199 |
+
"Name": parents["Course Name"],
|
200 |
+
"Published": 1,
|
201 |
+
"Visibility in catalog": "visible",
|
202 |
+
"Short description": parents["Short_Description"],
|
203 |
+
"Description": parents["Condensed_Description"],
|
204 |
+
"Tax status": "taxable",
|
205 |
+
"In stock?": 1,
|
206 |
+
"Stock": 1,
|
207 |
+
"Sold individually?": 1,
|
208 |
+
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
209 |
+
"Categories": "courses",
|
210 |
+
"Images": parents["Vendor"].map(logos).fillna(""),
|
211 |
+
"Parent": "",
|
212 |
+
"Brands": parents["Vendor"],
|
213 |
+
"Attribute 1 name": "Date",
|
214 |
+
"Attribute 1 value(s)": parents["Dates"],
|
215 |
+
"Attribute 1 visible": "visible",
|
216 |
+
"Attribute 1 global": 1,
|
217 |
+
"Attribute 2 name": "Location",
|
218 |
+
"Attribute 2 value(s)": "Virtual",
|
219 |
+
"Attribute 2 visible": "visible",
|
220 |
+
"Attribute 2 global": 1,
|
221 |
+
"Attribute 3 name": "Time",
|
222 |
+
"Attribute 3 value(s)": parents["Times"],
|
223 |
+
"Attribute 3 visible": "visible",
|
224 |
+
"Attribute 3 global": 1,
|
225 |
+
"Meta: outline": parents["Formatted_Agenda"],
|
226 |
+
"Meta: days": parents[dur],
|
227 |
+
"Meta: location": "Virtual",
|
228 |
+
"Meta: overview": parents["Target Audience"],
|
229 |
+
"Meta: objectives": parents["Formatted_Objectives"],
|
230 |
+
"Meta: prerequisites": parents["Formatted_Prerequisites"],
|
231 |
+
"Meta: agenda": parents["Formatted_Agenda"],
|
232 |
+
})
|
233 |
+
|
234 |
child = pd.DataFrame({
|
235 |
+
"Type": "variation, virtual",
|
236 |
+
"SKU": dsorted[sid].astype(str).str.strip(),
|
237 |
+
"Name": dsorted["Course Name"],
|
238 |
+
"Published": 1,
|
239 |
+
"Visibility in catalog": "visible",
|
240 |
+
"Short description": dsorted["Short_Description"],
|
241 |
+
"Description": dsorted["Condensed_Description"],
|
242 |
+
"Tax status": "taxable",
|
243 |
+
"In stock?": 1,
|
244 |
+
"Stock": 1,
|
245 |
+
"Sold individually?": 1,
|
246 |
+
"Regular price": dsorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
247 |
+
"Categories": "courses",
|
248 |
+
"Images": dsorted["Vendor"].map(logos).fillna(""),
|
249 |
+
"Parent": dsorted["Course ID"],
|
250 |
+
"Brands": dsorted["Vendor"],
|
251 |
+
"Attribute 1 name": "Date",
|
252 |
+
"Attribute 1 value(s)": dsorted["Date_fmt"],
|
253 |
+
"Attribute 1 visible": "visible",
|
254 |
+
"Attribute 1 global": 1,
|
255 |
+
"Attribute 2 name": "Location",
|
256 |
+
"Attribute 2 value(s)": "Virtual",
|
257 |
+
"Attribute 2 visible": "visible",
|
258 |
+
"Attribute 2 global": 1,
|
259 |
+
"Attribute 3 name": "Time",
|
260 |
+
"Attribute 3 value(s)": dsorted.apply(lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}", axis=1),
|
261 |
+
"Attribute 3 visible": "visible",
|
262 |
+
"Attribute 3 global": 1,
|
263 |
+
"Meta: outline": dsorted["Formatted_Agenda"],
|
264 |
+
"Meta: days": dsorted[dur],
|
265 |
+
"Meta: location": "Virtual",
|
266 |
+
"Meta: overview": dsorted["Target Audience"],
|
267 |
+
"Meta: objectives": dsorted["Formatted_Objectives"],
|
268 |
+
"Meta: prerequisites": dsorted["Formatted_Prerequisites"],
|
269 |
+
"Meta: agenda": dsorted["Formatted_Agenda"],
|
270 |
+
})
|
271 |
|
272 |
+
all_rows = pd.concat([parent, child], ignore_index=True)
|
273 |
+
order = [
|
274 |
+
"Type", "SKU", "Name", "Published", "Visibility in catalog", "Short description", "Description",
|
275 |
+
"Tax status", "In stock?", "Stock", "Sold individually?", "Regular price", "Categories", "Images",
|
276 |
+
"Parent", "Brands", "Attribute 1 name", "Attribute 1 value(s)", "Attribute 1 visible", "Attribute 1 global",
|
277 |
+
"Attribute 2 name", "Attribute 2 value(s)", "Attribute 2 visible", "Attribute 2 global", "Attribute 3 name",
|
278 |
+
"Attribute 3 value(s)", "Attribute 3 visible", "Attribute 3 global", "Meta: outline", "Meta: days", "Meta: location",
|
279 |
+
"Meta: overview", "Meta: objectives", "Meta: prerequisites", "Meta: agenda",
|
280 |
+
]
|
281 |
+
|
282 |
+
out = BytesIO()
|
283 |
+
all_rows[order].to_csv(out, index=False, encoding="utf-8-sig")
|
284 |
+
out.seek(0)
|
285 |
+
return out
|
286 |
|
287 |
# -------- Gradio wrappers ----------------------------------------------------
|
288 |
|
289 |
+
def process_file(upload: gr.File) -> str:
|
290 |
csv_bytes = convert(upload.name)
|
291 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
292 |
+
tmp.write(csv_bytes.getvalue())
|
293 |
+
path = tmp.name
|
294 |
return path
|
295 |
|
296 |
ui = gr.Interface(
|
297 |
fn=process_file,
|
298 |
+
inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv", ".xlsx", ".xls"]),
|
299 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
300 |
+
title="NetCom → WooCommerce CSV Processor (Try 2)",
|
301 |
+
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 2‑formatted WooCommerce CSV.",
|
302 |
analytics_enabled=False,
|
303 |
)
|
304 |
|