Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,34 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from io import BytesIO
|
| 9 |
from pathlib import Path
|
| 10 |
-
import openai
|
| 11 |
-
import gradio_client.utils
|
| 12 |
-
|
| 13 |
-
"""NetCom → WooCommerce transformer (Try 1 schema)
|
| 14 |
-
=================================================
|
| 15 |
-
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
* **Pandas future‑warning** silenced (`group_keys=False`).
|
| 22 |
-
"""
|
| 23 |
|
| 24 |
# -------- Gradio bool‑schema hot‑patch --------------------------------------
|
| 25 |
_original = gradio_client.utils._json_schema_to_python_type
|
| 26 |
|
| 27 |
-
def _fixed_json_schema_to_python_type(schema, defs=None):
|
| 28 |
if isinstance(schema, bool):
|
| 29 |
return "any"
|
| 30 |
return _original(schema, defs)
|
|
@@ -32,101 +36,269 @@ def _fixed_json_schema_to_python_type(schema, defs=None):
|
|
| 32 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
| 33 |
|
| 34 |
# -------- Tiny disk cache ----------------------------------------------------
|
| 35 |
-
CACHE_DIR = Path("ai_response_cache")
|
|
|
|
| 36 |
|
| 37 |
-
def _cache_path(p: str):
|
| 38 |
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
| 39 |
|
| 40 |
-
def _get_cached(p: str):
|
| 41 |
try:
|
| 42 |
-
return json.loads(_cache_path(p).read_text("utf-8"))[
|
| 43 |
except Exception:
|
| 44 |
return None
|
| 45 |
|
| 46 |
-
def _set_cache(p: str, r: str):
|
| 47 |
try:
|
| 48 |
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
| 49 |
except Exception:
|
| 50 |
pass
|
| 51 |
|
| 52 |
# -------- Async GPT helpers --------------------------------------------------
|
| 53 |
-
async def
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
try:
|
| 58 |
-
msg = await client.chat.completions.create(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
text = msg.choices[0].message.content
|
| 60 |
-
except Exception as
|
| 61 |
-
text = f"Error: {
|
|
|
|
| 62 |
_set_cache(prompt, text)
|
| 63 |
return text
|
| 64 |
|
| 65 |
-
async def
|
| 66 |
-
|
| 67 |
-
for
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
return out
|
| 74 |
|
| 75 |
# -------- Core converter -----------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
def
|
| 78 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def convert(path: str) -> BytesIO:
|
| 81 |
-
logos = {
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
_batch(df.get(dcol,"").fillna("").tolist(), "Create a concise 250-character summary of this course description:"),
|
| 92 |
-
_batch(df.get(dcol,"").fillna("").tolist(), "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
|
| 93 |
-
_batch(df.get(ocol,"").fillna("").tolist(), "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':") ,
|
| 94 |
-
_batch(df.get(acol,"").fillna("").tolist(), "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':")))
|
| 95 |
-
loop.close()
|
| 96 |
-
fpre=[default_pre if not str(p).strip() else asyncio.run(_batch([p],"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in df.get(pcol,"").fillna("").tolist()]
|
| 97 |
|
| 98 |
-
|
|
|
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
| 101 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
| 106 |
|
|
|
|
| 107 |
parent = pd.DataFrame({
|
| 108 |
-
"Type":"variable",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
child = pd.DataFrame({
|
| 110 |
-
"Type":"variation, virtual",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
all_rows = pd.concat([parent,child],ignore_index=True)
|
| 113 |
-
order=[
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# -------- Gradio wrappers ----------------------------------------------------
|
| 117 |
|
| 118 |
-
def process_file(upload):
|
| 119 |
csv_bytes = convert(upload.name)
|
| 120 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
| 121 |
-
tmp.write(csv_bytes.getvalue())
|
|
|
|
| 122 |
return path
|
| 123 |
|
| 124 |
ui = gr.Interface(
|
| 125 |
fn=process_file,
|
| 126 |
-
inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv",".xlsx",".xls"]),
|
| 127 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
| 128 |
-
title="NetCom → WooCommerce CSV Processor",
|
| 129 |
-
description="Upload NetCom schedule (.csv/.xlsx) to get the Try
|
| 130 |
analytics_enabled=False,
|
| 131 |
)
|
| 132 |
|
|
|
|
| 1 |
+
"""NetCom → WooCommerce transformer (Try 2 schema — cleaned async)
|
| 2 |
+
=============================================================
|
| 3 |
+
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
| 4 |
+
|
| 5 |
+
Changes vs Try 1
|
| 6 |
+
----------------
|
| 7 |
+
* Use **one** event‑loop via `asyncio.run()` — no manual `new_event_loop()` / `loop.close()` gymnastics.
|
| 8 |
+
* **One** shared `openai.AsyncOpenAI` client, properly closed with an `async with` block.
|
| 9 |
+
* Fixed pandas future‑warning by adding `include_groups=False`.
|
| 10 |
+
* Same Gradio interface, caching, and JSON‑schema hot‑patch as before.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
from __future__ import annotations
|
| 14 |
+
|
| 15 |
import asyncio
|
| 16 |
+
import hashlib
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import tempfile
|
| 20 |
from io import BytesIO
|
| 21 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
import gradio as gr
|
| 24 |
+
import gradio_client.utils
|
| 25 |
+
import openai
|
| 26 |
+
import pandas as pd
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# -------- Gradio bool‑schema hot‑patch --------------------------------------
|
| 29 |
_original = gradio_client.utils._json_schema_to_python_type
|
| 30 |
|
| 31 |
+
def _fixed_json_schema_to_python_type(schema, defs=None): # type: ignore
|
| 32 |
if isinstance(schema, bool):
|
| 33 |
return "any"
|
| 34 |
return _original(schema, defs)
|
|
|
|
| 36 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
| 37 |
|
| 38 |
# -------- Tiny disk cache ----------------------------------------------------
|
| 39 |
+
CACHE_DIR = Path("ai_response_cache")
|
| 40 |
+
CACHE_DIR.mkdir(exist_ok=True)
|
| 41 |
|
| 42 |
+
def _cache_path(p: str) -> Path:
|
| 43 |
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
| 44 |
|
| 45 |
+
def _get_cached(p: str) -> str | None:
|
| 46 |
try:
|
| 47 |
+
return json.loads(_cache_path(p).read_text("utf-8"))['response']
|
| 48 |
except Exception:
|
| 49 |
return None
|
| 50 |
|
| 51 |
+
def _set_cache(p: str, r: str) -> None:
|
| 52 |
try:
|
| 53 |
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
| 54 |
except Exception:
|
| 55 |
pass
|
| 56 |
|
| 57 |
# -------- Async GPT helpers --------------------------------------------------
|
| 58 |
+
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
| 59 |
+
"""Single LLM call with on‑disk response cache."""
|
| 60 |
+
cached = _get_cached(prompt)
|
| 61 |
+
if cached is not None:
|
| 62 |
+
return cached
|
| 63 |
+
|
| 64 |
try:
|
| 65 |
+
msg = await client.chat.completions.create(
|
| 66 |
+
model="gpt-4o-mini",
|
| 67 |
+
messages=[{"role": "user", "content": prompt}],
|
| 68 |
+
temperature=0,
|
| 69 |
+
)
|
| 70 |
text = msg.choices[0].message.content
|
| 71 |
+
except Exception as exc: # network or auth failure ‑ return explicit error string
|
| 72 |
+
text = f"Error: {exc}"
|
| 73 |
+
|
| 74 |
_set_cache(prompt, text)
|
| 75 |
return text
|
| 76 |
|
| 77 |
+
async def _batch_async(lst: list[str], instruction: str, client: openai.AsyncOpenAI) -> list[str]:
|
| 78 |
+
"""Vectorised helper — returns an output list matching *lst* length."""
|
| 79 |
+
out: list[str] = ["" for _ in lst]
|
| 80 |
+
idx, prompts = [], []
|
| 81 |
+
for i, txt in enumerate(lst):
|
| 82 |
+
if isinstance(txt, str) and txt.strip():
|
| 83 |
+
idx.append(i)
|
| 84 |
+
prompts.append(f"{instruction}\n\nText: {txt}")
|
| 85 |
+
# Fast‑path: nothing to do
|
| 86 |
+
if not prompts:
|
| 87 |
+
return out
|
| 88 |
+
|
| 89 |
+
# Fire off all prompts concurrently
|
| 90 |
+
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
|
| 91 |
+
for j, val in enumerate(responses):
|
| 92 |
+
out[idx[j]] = val
|
| 93 |
return out
|
| 94 |
|
| 95 |
# -------- Core converter -----------------------------------------------------
|
| 96 |
+
DEFAULT_PREREQ = (
|
| 97 |
+
"No specific prerequisites are required for this course. Basic computer literacy and "
|
| 98 |
+
"familiarity with fundamental concepts in the subject area are recommended for the best "
|
| 99 |
+
"learning experience."
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def _read(path: str) -> pd.DataFrame:
|
| 103 |
+
if path.lower().endswith((".xlsx", ".xls")):
|
| 104 |
+
return pd.read_excel(path)
|
| 105 |
+
return pd.read_csv(path, encoding="latin1")
|
| 106 |
|
| 107 |
+
async def _enrich_dataframe(df: pd.DataFrame, dcol: str, ocol: str, pcol: str, acol: str) -> tuple[list[str], list[str], list[str], list[str], list[str]]:
|
| 108 |
+
"""Run all LLM batches concurrently and return the five enrichment columns."""
|
| 109 |
+
async with openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY")) as client:
|
| 110 |
+
# 1) Descriptions and objectives/agenda batches
|
| 111 |
+
sdesc, ldesc, fobj, fout = await asyncio.gather(
|
| 112 |
+
_batch_async(df.get(dcol, "").fillna("").tolist(),
|
| 113 |
+
"Create a concise 250-character summary of this course description:", client),
|
| 114 |
+
_batch_async(df.get(dcol, "").fillna("").tolist(),
|
| 115 |
+
"Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:", client),
|
| 116 |
+
_batch_async(df.get(ocol, "").fillna("").tolist(),
|
| 117 |
+
"Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':", client),
|
| 118 |
+
_batch_async(df.get(acol, "").fillna("").tolist(),
|
| 119 |
+
"Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':", client),
|
| 120 |
+
)
|
| 121 |
+
# 2) Prerequisites batch (some rows may be empty → DEFAULT_PREREQ)
|
| 122 |
+
prereq_raw = df.get(pcol, "").fillna("").tolist()
|
| 123 |
+
fpre: list[str] = []
|
| 124 |
+
for req in prereq_raw:
|
| 125 |
+
if not str(req).strip():
|
| 126 |
+
fpre.append(DEFAULT_PREREQ)
|
| 127 |
+
else:
|
| 128 |
+
formatted = await _batch_async([req],
|
| 129 |
+
"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':",
|
| 130 |
+
client)
|
| 131 |
+
fpre.append(formatted[0])
|
| 132 |
+
|
| 133 |
+
return sdesc, ldesc, fobj, fout, fpre
|
| 134 |
|
| 135 |
def convert(path: str) -> BytesIO:
|
| 136 |
+
logos = {
|
| 137 |
+
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
|
| 138 |
+
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
| 139 |
+
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
| 140 |
+
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
|
| 141 |
+
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
|
| 142 |
+
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
|
| 143 |
+
"PMI": "/wp-content/uploads/2025/04/PMI.png",
|
| 144 |
+
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
|
| 145 |
+
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
|
| 146 |
+
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
|
| 147 |
+
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
df = _read(path)
|
| 151 |
+
df.columns = df.columns.str.strip()
|
| 152 |
+
|
| 153 |
+
# Helper to locate first existing column name from a list of candidates
|
| 154 |
+
first_col = lambda *candidates: next((c for c in candidates if c in df.columns), None)
|
| 155 |
|
| 156 |
+
dcol = first_col("Description", "Decription")
|
| 157 |
+
ocol = first_col("Objectives", "objectives")
|
| 158 |
+
pcol = first_col("RequiredPrerequisite", "Required Pre-requisite")
|
| 159 |
+
acol = first_col("Outline")
|
| 160 |
+
dur = first_col("Duration") or "Duration"
|
| 161 |
+
sid = first_col("Course SID", "Course SID")
|
| 162 |
|
| 163 |
+
if dur not in df.columns:
|
| 164 |
+
df[dur] = "" # create empty Duration col if missing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
# ---------- LLM enrichment (async) -------------------------------------
|
| 167 |
+
sdesc, ldesc, fobj, fout, fpre = asyncio.run(_enrich_dataframe(df, dcol, ocol, pcol, acol))
|
| 168 |
|
| 169 |
+
df["Short_Description"] = sdesc
|
| 170 |
+
df["Condensed_Description"] = ldesc
|
| 171 |
+
df["Formatted_Objectives"] = fobj
|
| 172 |
+
df["Formatted_Agenda"] = fout
|
| 173 |
+
df["Formatted_Prerequisites"] = fpre
|
| 174 |
+
|
| 175 |
+
# ---------- Schedule aggregation --------------------------------------
|
| 176 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
| 177 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
| 178 |
+
|
| 179 |
+
dsorted = df.sort_values(["Course ID", "Course Start Date"])
|
| 180 |
+
d_agg = (
|
| 181 |
+
dsorted
|
| 182 |
+
.groupby("Course ID")["Date_fmt"]
|
| 183 |
+
.apply(lambda s: ",".join(s.dropna().unique()))
|
| 184 |
+
.reset_index(name="Dates")
|
| 185 |
+
)
|
| 186 |
+
t_agg = (
|
| 187 |
+
dsorted
|
| 188 |
+
.groupby("Course ID", group_keys=False, include_groups=False)
|
| 189 |
+
.apply(lambda g: ",".join(f"{st}-{et} {tz}" for st, et, tz in zip(g["Course Start Time"], g["Course End Time"], g["Time Zone"])))
|
| 190 |
+
.reset_index(name="Times")
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
| 194 |
|
| 195 |
+
# ---------- Parent / child product rows --------------------------------
|
| 196 |
parent = pd.DataFrame({
|
| 197 |
+
"Type": "variable",
|
| 198 |
+
"SKU": parents["Course ID"],
|
| 199 |
+
"Name": parents["Course Name"],
|
| 200 |
+
"Published": 1,
|
| 201 |
+
"Visibility in catalog": "visible",
|
| 202 |
+
"Short description": parents["Short_Description"],
|
| 203 |
+
"Description": parents["Condensed_Description"],
|
| 204 |
+
"Tax status": "taxable",
|
| 205 |
+
"In stock?": 1,
|
| 206 |
+
"Stock": 1,
|
| 207 |
+
"Sold individually?": 1,
|
| 208 |
+
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
| 209 |
+
"Categories": "courses",
|
| 210 |
+
"Images": parents["Vendor"].map(logos).fillna(""),
|
| 211 |
+
"Parent": "",
|
| 212 |
+
"Brands": parents["Vendor"],
|
| 213 |
+
"Attribute 1 name": "Date",
|
| 214 |
+
"Attribute 1 value(s)": parents["Dates"],
|
| 215 |
+
"Attribute 1 visible": "visible",
|
| 216 |
+
"Attribute 1 global": 1,
|
| 217 |
+
"Attribute 2 name": "Location",
|
| 218 |
+
"Attribute 2 value(s)": "Virtual",
|
| 219 |
+
"Attribute 2 visible": "visible",
|
| 220 |
+
"Attribute 2 global": 1,
|
| 221 |
+
"Attribute 3 name": "Time",
|
| 222 |
+
"Attribute 3 value(s)": parents["Times"],
|
| 223 |
+
"Attribute 3 visible": "visible",
|
| 224 |
+
"Attribute 3 global": 1,
|
| 225 |
+
"Meta: outline": parents["Formatted_Agenda"],
|
| 226 |
+
"Meta: days": parents[dur],
|
| 227 |
+
"Meta: location": "Virtual",
|
| 228 |
+
"Meta: overview": parents["Target Audience"],
|
| 229 |
+
"Meta: objectives": parents["Formatted_Objectives"],
|
| 230 |
+
"Meta: prerequisites": parents["Formatted_Prerequisites"],
|
| 231 |
+
"Meta: agenda": parents["Formatted_Agenda"],
|
| 232 |
+
})
|
| 233 |
+
|
| 234 |
child = pd.DataFrame({
|
| 235 |
+
"Type": "variation, virtual",
|
| 236 |
+
"SKU": dsorted[sid].astype(str).str.strip(),
|
| 237 |
+
"Name": dsorted["Course Name"],
|
| 238 |
+
"Published": 1,
|
| 239 |
+
"Visibility in catalog": "visible",
|
| 240 |
+
"Short description": dsorted["Short_Description"],
|
| 241 |
+
"Description": dsorted["Condensed_Description"],
|
| 242 |
+
"Tax status": "taxable",
|
| 243 |
+
"In stock?": 1,
|
| 244 |
+
"Stock": 1,
|
| 245 |
+
"Sold individually?": 1,
|
| 246 |
+
"Regular price": dsorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
| 247 |
+
"Categories": "courses",
|
| 248 |
+
"Images": dsorted["Vendor"].map(logos).fillna(""),
|
| 249 |
+
"Parent": dsorted["Course ID"],
|
| 250 |
+
"Brands": dsorted["Vendor"],
|
| 251 |
+
"Attribute 1 name": "Date",
|
| 252 |
+
"Attribute 1 value(s)": dsorted["Date_fmt"],
|
| 253 |
+
"Attribute 1 visible": "visible",
|
| 254 |
+
"Attribute 1 global": 1,
|
| 255 |
+
"Attribute 2 name": "Location",
|
| 256 |
+
"Attribute 2 value(s)": "Virtual",
|
| 257 |
+
"Attribute 2 visible": "visible",
|
| 258 |
+
"Attribute 2 global": 1,
|
| 259 |
+
"Attribute 3 name": "Time",
|
| 260 |
+
"Attribute 3 value(s)": dsorted.apply(lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}", axis=1),
|
| 261 |
+
"Attribute 3 visible": "visible",
|
| 262 |
+
"Attribute 3 global": 1,
|
| 263 |
+
"Meta: outline": dsorted["Formatted_Agenda"],
|
| 264 |
+
"Meta: days": dsorted[dur],
|
| 265 |
+
"Meta: location": "Virtual",
|
| 266 |
+
"Meta: overview": dsorted["Target Audience"],
|
| 267 |
+
"Meta: objectives": dsorted["Formatted_Objectives"],
|
| 268 |
+
"Meta: prerequisites": dsorted["Formatted_Prerequisites"],
|
| 269 |
+
"Meta: agenda": dsorted["Formatted_Agenda"],
|
| 270 |
+
})
|
| 271 |
|
| 272 |
+
all_rows = pd.concat([parent, child], ignore_index=True)
|
| 273 |
+
order = [
|
| 274 |
+
"Type", "SKU", "Name", "Published", "Visibility in catalog", "Short description", "Description",
|
| 275 |
+
"Tax status", "In stock?", "Stock", "Sold individually?", "Regular price", "Categories", "Images",
|
| 276 |
+
"Parent", "Brands", "Attribute 1 name", "Attribute 1 value(s)", "Attribute 1 visible", "Attribute 1 global",
|
| 277 |
+
"Attribute 2 name", "Attribute 2 value(s)", "Attribute 2 visible", "Attribute 2 global", "Attribute 3 name",
|
| 278 |
+
"Attribute 3 value(s)", "Attribute 3 visible", "Attribute 3 global", "Meta: outline", "Meta: days", "Meta: location",
|
| 279 |
+
"Meta: overview", "Meta: objectives", "Meta: prerequisites", "Meta: agenda",
|
| 280 |
+
]
|
| 281 |
+
|
| 282 |
+
out = BytesIO()
|
| 283 |
+
all_rows[order].to_csv(out, index=False, encoding="utf-8-sig")
|
| 284 |
+
out.seek(0)
|
| 285 |
+
return out
|
| 286 |
|
| 287 |
# -------- Gradio wrappers ----------------------------------------------------
|
| 288 |
|
| 289 |
+
def process_file(upload: gr.File) -> str:
|
| 290 |
csv_bytes = convert(upload.name)
|
| 291 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
| 292 |
+
tmp.write(csv_bytes.getvalue())
|
| 293 |
+
path = tmp.name
|
| 294 |
return path
|
| 295 |
|
| 296 |
ui = gr.Interface(
|
| 297 |
fn=process_file,
|
| 298 |
+
inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv", ".xlsx", ".xls"]),
|
| 299 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
| 300 |
+
title="NetCom → WooCommerce CSV Processor (Try 2)",
|
| 301 |
+
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 2‑formatted WooCommerce CSV.",
|
| 302 |
analytics_enabled=False,
|
| 303 |
)
|
| 304 |
|