Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,253 Bytes
b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf 40a4e69 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf 33c9103 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf c1ad781 b7cfbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel, FluxControlNetPipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
# Device setup
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
else:
power_device = "CPU"
device = "cpu"
# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")
# Download FLUX model
print("π₯ Downloading FLUX model...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load Florence-2 model for image captioning
print("π₯ Loading Florence-2 model...")
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager" # Fix for SDPA compatibility issue
).to(device)
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
# Load FLUX ControlNet pipeline
print("π₯ Loading FLUX ControlNet...")
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
pipe.to(device)
print("β
All models loaded successfully!")
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
def generate_caption(image):
"""Generate detailed caption using Florence-2"""
try:
task_prompt = "<MORE_DETAILED_CAPTION>"
prompt = task_prompt
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=True,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
caption = parsed_answer[task_prompt]
return caption
except Exception as e:
print(f"Caption generation failed: {e}")
return "a high quality detailed image"
def process_input(input_image, upscale_factor):
"""Process input image and handle size constraints"""
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
)
gr.Info(
f"Requested output image is too large. Resizing input to fit within pixel budget."
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# Resize to multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w_original, h_original, was_resized
def load_image_from_url(url):
"""Load image from URL"""
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(requests.get(url, stream=True).raw)
except Exception as e:
raise gr.Error(f"Failed to load image from URL: {e}")
@spaces.GPU(duration=120)
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
guidance_scale,
use_generated_caption,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
"""Main enhancement function"""
# Handle image input
if image_input is not None:
input_image = image_input
elif image_url:
input_image = load_image_from_url(image_url)
else:
raise gr.Error("Please provide an image (upload or URL)")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
true_input_image = input_image
# Process input image
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
# Generate caption if requested
if use_generated_caption:
gr.Info("π Generating image caption...")
generated_caption = generate_caption(input_image)
prompt = generated_caption
else:
prompt = custom_prompt if custom_prompt.strip() else ""
# Rescale with upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
generator = torch.Generator().manual_seed(seed)
gr.Info("π Upscaling image...")
# Generate upscaled image
image = pipe(
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
if was_resized:
gr.Info(f"π Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
# Resize to target desired size
final_image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
return [true_input_image, final_image, seed, generated_caption if use_generated_caption else ""]
# Create Gradio interface
with gr.Blocks(css=css, title="π¨ AI Image Enhancer - Florence-2 + FLUX") as demo:
gr.HTML("""
<div class="main-header">
<h1>π¨ AI Image Enhancer</h1>
<p>Upload an image or provide a URL to enhance it using Florence-2 captioning and FLUX upscaling</p>
<p>Currently running on <strong>{}</strong></p>
</div>
""".format(power_device))
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π€ Input</h3>")
with gr.Tabs():
with gr.TabItem("π Upload Image"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=300
)
with gr.TabItem("π Image URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
)
gr.HTML("<h3>ποΈ Caption Settings</h3>")
use_generated_caption = gr.Checkbox(
label="Use AI-generated caption (Florence-2)",
value=True,
info="Generate detailed caption automatically"
)
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Enter custom prompt or leave empty for generated caption",
lines=2
)
gr.HTML("<h3>βοΈ Enhancement Settings</h3>")
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=2,
info="How much to upscale the image"
)
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=50,
step=1,
value=28,
info="More steps = better quality but slower"
)
controlnet_conditioning_scale = gr.Slider(
label="ControlNet Conditioning Scale",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.6,
info="How much to preserve original structure"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=3.5,
info="How closely to follow the prompt"
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
enhance_btn = gr.Button(
"π Enhance Image",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.HTML("<h3>π Results</h3>")
result_slider = ImageSlider(
label="Input / Enhanced",
type="pil",
interactive=True,
height=400
)
with gr.Row():
output_seed = gr.Number(
label="Used Seed",
precision=0,
interactive=False
)
generated_caption_output = gr.Textbox(
label="Generated Caption",
placeholder="AI-generated caption will appear here...",
lines=3,
interactive=False
)
# Examples
gr.Examples(
examples=[
[None, "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg", 42, False, 28, 2, 0.6, 3.5, True, ""],
[None, "https://picsum.photos/512/512", 123, False, 25, 3, 0.8, 4.0, True, ""],
],
inputs=[
input_image,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
guidance_scale,
use_generated_caption,
custom_prompt,
]
)
# Event handler
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
guidance_scale,
use_generated_caption,
custom_prompt,
],
outputs=[result_slider, output_seed, generated_caption_output]
)
gr.HTML("""
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
<h4>π‘ How it works:</h4>
<ol>
<li><strong>Florence-2</strong> analyzes your image and generates a detailed caption</li>
<li><strong>FLUX ControlNet</strong> uses this caption to guide the upscaling process</li>
<li>The result is an enhanced, higher-resolution image with improved details</li>
</ol>
<p><strong>Note:</strong> Due to memory constraints, output is limited to 1024x1024 pixels total budget.</p>
</div>
""")
if __name__ == "__main__":
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860) |