fluxhdupscaler / app.py
comrender's picture
Update app.py
40a4e69 verified
raw
history blame
12.3 kB
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel, FluxControlNetPipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
# Device setup
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
else:
power_device = "CPU"
device = "cpu"
# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")
# Download FLUX model
print("πŸ“₯ Downloading FLUX model...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load Florence-2 model for image captioning
print("πŸ“₯ Loading Florence-2 model...")
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager" # Fix for SDPA compatibility issue
).to(device)
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
# Load FLUX ControlNet pipeline
print("πŸ“₯ Loading FLUX ControlNet...")
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
model_path,
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
pipe.to(device)
print("βœ… All models loaded successfully!")
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
def generate_caption(image):
"""Generate detailed caption using Florence-2"""
try:
task_prompt = "<MORE_DETAILED_CAPTION>"
prompt = task_prompt
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=True,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
caption = parsed_answer[task_prompt]
return caption
except Exception as e:
print(f"Caption generation failed: {e}")
return "a high quality detailed image"
def process_input(input_image, upscale_factor):
"""Process input image and handle size constraints"""
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
)
gr.Info(
f"Requested output image is too large. Resizing input to fit within pixel budget."
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# Resize to multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w_original, h_original, was_resized
def load_image_from_url(url):
"""Load image from URL"""
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(requests.get(url, stream=True).raw)
except Exception as e:
raise gr.Error(f"Failed to load image from URL: {e}")
@spaces.GPU(duration=120)
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
guidance_scale,
use_generated_caption,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
"""Main enhancement function"""
# Handle image input
if image_input is not None:
input_image = image_input
elif image_url:
input_image = load_image_from_url(image_url)
else:
raise gr.Error("Please provide an image (upload or URL)")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
true_input_image = input_image
# Process input image
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
# Generate caption if requested
if use_generated_caption:
gr.Info("πŸ” Generating image caption...")
generated_caption = generate_caption(input_image)
prompt = generated_caption
else:
prompt = custom_prompt if custom_prompt.strip() else ""
# Rescale with upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
generator = torch.Generator().manual_seed(seed)
gr.Info("πŸš€ Upscaling image...")
# Generate upscaled image
image = pipe(
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
if was_resized:
gr.Info(f"πŸ“ Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
# Resize to target desired size
final_image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
return [true_input_image, final_image, seed, generated_caption if use_generated_caption else ""]
# Create Gradio interface
with gr.Blocks(css=css, title="🎨 AI Image Enhancer - Florence-2 + FLUX") as demo:
gr.HTML("""
<div class="main-header">
<h1>🎨 AI Image Enhancer</h1>
<p>Upload an image or provide a URL to enhance it using Florence-2 captioning and FLUX upscaling</p>
<p>Currently running on <strong>{}</strong></p>
</div>
""".format(power_device))
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πŸ“€ Input</h3>")
with gr.Tabs():
with gr.TabItem("πŸ“ Upload Image"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=300
)
with gr.TabItem("πŸ”— Image URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
)
gr.HTML("<h3>πŸŽ›οΈ Caption Settings</h3>")
use_generated_caption = gr.Checkbox(
label="Use AI-generated caption (Florence-2)",
value=True,
info="Generate detailed caption automatically"
)
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Enter custom prompt or leave empty for generated caption",
lines=2
)
gr.HTML("<h3>βš™οΈ Enhancement Settings</h3>")
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=2,
info="How much to upscale the image"
)
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=50,
step=1,
value=28,
info="More steps = better quality but slower"
)
controlnet_conditioning_scale = gr.Slider(
label="ControlNet Conditioning Scale",
minimum=0.1,
maximum=1.5,
step=0.1,
value=0.6,
info="How much to preserve original structure"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=3.5,
info="How closely to follow the prompt"
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
enhance_btn = gr.Button(
"πŸš€ Enhance Image",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.HTML("<h3>πŸ“Š Results</h3>")
result_slider = ImageSlider(
label="Input / Enhanced",
type="pil",
interactive=True,
height=400
)
with gr.Row():
output_seed = gr.Number(
label="Used Seed",
precision=0,
interactive=False
)
generated_caption_output = gr.Textbox(
label="Generated Caption",
placeholder="AI-generated caption will appear here...",
lines=3,
interactive=False
)
# Examples
gr.Examples(
examples=[
[None, "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg", 42, False, 28, 2, 0.6, 3.5, True, ""],
[None, "https://picsum.photos/512/512", 123, False, 25, 3, 0.8, 4.0, True, ""],
],
inputs=[
input_image,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
guidance_scale,
use_generated_caption,
custom_prompt,
]
)
# Event handler
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
controlnet_conditioning_scale,
guidance_scale,
use_generated_caption,
custom_prompt,
],
outputs=[result_slider, output_seed, generated_caption_output]
)
gr.HTML("""
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
<h4>πŸ’‘ How it works:</h4>
<ol>
<li><strong>Florence-2</strong> analyzes your image and generates a detailed caption</li>
<li><strong>FLUX ControlNet</strong> uses this caption to guide the upscaling process</li>
<li>The result is an enhanced, higher-resolution image with improved details</li>
</ol>
<p><strong>Note:</strong> Due to memory constraints, output is limited to 1024x1024 pixels total budget.</p>
</div>
""")
if __name__ == "__main__":
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)