fluxhdupscaler / app.py
comrender's picture
Update app.py
be0c600 verified
raw
history blame
9.27 kB
import warnings
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import FluxImg2ImgPipeline
import random
import numpy as np
import os
import spaces
import huggingface_hub
import time
huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT = 60
try:
import basicsr
# Assume basicsr interpolation setup
interpolation = "basicsr" # Placeholder for actual basicsr usage
except ImportError:
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
interpolation = Image.LANCZOS
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Load FLUX img2img pipeline directly to avoid auto_pipeline issues
pipe = FluxImg2ImgPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=huggingface_token
).to(device)
pipe.enable_vae_tiling() # To help with memory for large images
# Initialize Florence model with float32 to avoid dtype mismatch, with retry
for attempt in range(5):
try:
florence_model = AutoModelForCausalLM.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True,
torch_dtype=torch.float32
).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True
)
break
except Exception as e:
print(f"Attempt {attempt+1} to load Florence-2 failed: {e}")
time.sleep(10)
else:
raise RuntimeError("Failed to load Florence-2 after multiple attempts")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Florence caption function
@spaces.GPU
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<DETAILED_CAPTION>"]
# Tiled FLUX img2img function with fix for small dimensions and overlap
def tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale, tile_size=512, overlap=64):
width, height = image.size
# Resize to multiple of 16 to avoid dimension warnings
width = (width // 16) * 16 if width >= 16 else 16
height = (height // 16) * 16 if height >= 16 else 16
if width != image.size[0] or height != image.size[1]:
image = image.resize((width, height), resample=interpolation)
result = Image.new('RGB', (width, height))
stride = tile_size - overlap
# Tile in both directions, handling small sizes
for y in range(0, height, stride):
for x in range(0, width, stride):
tile_left = x
tile_top = y
tile_right = min(x + tile_size, width)
tile_bottom = min(y + tile_size, height)
tile = image.crop((tile_left, tile_top, tile_right, tile_bottom))
# Skip if tile is too small
if tile.width < 16 or tile.height < 16:
continue
# Generate with img2img
generated_tile = pipe(
prompt,
image=tile,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps
).images[0]
generated_tile = generated_tile.resize(tile.size) # Ensure size match
# Paste without blend if first tile
if x == 0 and y == 0:
result.paste(generated_tile, (tile_left, tile_top))
continue
# Vertical blend
if y > 0:
effective_overlap = min(overlap, tile_bottom - tile_top, height - tile_top)
if effective_overlap > 0:
mask = Image.new('L', (tile_right - tile_left, effective_overlap))
for i in range(mask.width):
for j in range(mask.height):
divisor = effective_overlap - 1 if effective_overlap > 1 else 1
mask.putpixel((i, j), int(255 * (j / divisor)))
blend_region = Image.composite(
generated_tile.crop((0, 0, mask.width, mask.height)),
result.crop((tile_left, tile_top, tile_right, tile_top + mask.height)),
mask
)
result.paste(blend_region, (tile_left, tile_top))
result.paste(generated_tile.crop((0, effective_overlap, generated_tile.width, generated_tile.height)), (tile_left, tile_top + effective_overlap))
else:
result.paste(generated_tile, (tile_left, tile_top))
# Horizontal blend
if x > 0:
effective_overlap_h = min(overlap, tile_right - tile_left, width - tile_left)
if effective_overlap_h > 0:
mask_h = Image.new('L', (effective_overlap_h, tile_bottom - tile_top))
for i in range(mask_h.width):
for j in range(mask_h.height):
divisor_h = effective_overlap_h - 1 if effective_overlap_h > 1 else 1
mask_h.putpixel((i, j), int(255 * (i / divisor_h)))
blend_region_h = Image.composite(
generated_tile.crop((0, 0, mask_h.width, mask_h.height)),
result.crop((tile_left, tile_top, tile_left + mask_h.width, tile_bottom)),
mask_h
)
result.paste(blend_region_h, (tile_left, tile_top))
result.paste(generated_tile.crop((effective_overlap_h, 0, generated_tile.width, generated_tile.height)), (tile_left + effective_overlap_h, tile_top))
else:
result.paste(generated_tile, (tile_left, tile_top))
return result
# Main enhance function
@spaces.GPU(duration=190)
def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength, progress=gr.Progress(track_tqdm=True)):
prompt = text_prompt
if image is not None:
prompt = florence_caption(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Use tiled if large, else direct
if image and (image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE):
output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
else:
kw = {}
if image is not None:
kw['image'] = image
kw['strength'] = strength
else:
kw['width'] = width
kw['height'] = height
output_image = pipe(
prompt,
generator=generator,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
**kw
).images[0]
return output_image, prompt, seed
# Gradio interface
title = "<h1 align='center'>FLUX Image Enhancer with Florence-2 Captioner</h1>"
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
text_prompt = gr.Textbox(label="Text Prompt (if no image)")
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.8)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, value=5.0)
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
seed = gr.Number(value=42, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Width")
height = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Height")
submit = gr.Button("Enhance")
with gr.Column():
output_image = gr.Image(label="Enhanced Image")
output_prompt = gr.Textbox(label="Generated Prompt")
output_seed = gr.Number(label="Used Seed")
submit.click(
enhance_image,
inputs=[input_image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength],
outputs=[output_image, output_prompt, output_seed]
)
print("✅ All models loaded successfully!")
demo.launch(server_port=7860, server_name="0.0.0.0")