Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,272 Bytes
b7cfbcf c1ad781 b7cfbcf 8365163 bda5b3f 597b21e be0c600 58d1893 082dbe6 597b21e 082dbe6 58d1893 597b21e bda5b3f 597b21e 58d1893 be0c600 a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e c84d7da cfbfc9b 597b21e b7cfbcf 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c cfbfc9b 597b21e be0c600 597b21e a1ef78c cfbfc9b 597b21e be0c600 597b21e a1ef78c 597b21e a1ef78c 597b21e bda5b3f 597b21e cfbfc9b 597b21e cfbfc9b 597b21e a1ef78c 597b21e c1ad781 597b21e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import warnings
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import FluxImg2ImgPipeline
import random
import numpy as np
import os
import spaces
import huggingface_hub
import time
huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT = 60
try:
import basicsr
# Assume basicsr interpolation setup
interpolation = "basicsr" # Placeholder for actual basicsr usage
except ImportError:
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
interpolation = Image.LANCZOS
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Load FLUX img2img pipeline directly to avoid auto_pipeline issues
pipe = FluxImg2ImgPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=huggingface_token
).to(device)
pipe.enable_vae_tiling() # To help with memory for large images
# Initialize Florence model with float32 to avoid dtype mismatch, with retry
for attempt in range(5):
try:
florence_model = AutoModelForCausalLM.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True,
torch_dtype=torch.float32
).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True
)
break
except Exception as e:
print(f"Attempt {attempt+1} to load Florence-2 failed: {e}")
time.sleep(10)
else:
raise RuntimeError("Failed to load Florence-2 after multiple attempts")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Florence caption function
@spaces.GPU
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<DETAILED_CAPTION>"]
# Tiled FLUX img2img function with fix for small dimensions and overlap
def tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale, tile_size=512, overlap=64):
width, height = image.size
# Resize to multiple of 16 to avoid dimension warnings
width = (width // 16) * 16 if width >= 16 else 16
height = (height // 16) * 16 if height >= 16 else 16
if width != image.size[0] or height != image.size[1]:
image = image.resize((width, height), resample=interpolation)
result = Image.new('RGB', (width, height))
stride = tile_size - overlap
# Tile in both directions, handling small sizes
for y in range(0, height, stride):
for x in range(0, width, stride):
tile_left = x
tile_top = y
tile_right = min(x + tile_size, width)
tile_bottom = min(y + tile_size, height)
tile = image.crop((tile_left, tile_top, tile_right, tile_bottom))
# Skip if tile is too small
if tile.width < 16 or tile.height < 16:
continue
# Generate with img2img
generated_tile = pipe(
prompt,
image=tile,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps
).images[0]
generated_tile = generated_tile.resize(tile.size) # Ensure size match
# Paste without blend if first tile
if x == 0 and y == 0:
result.paste(generated_tile, (tile_left, tile_top))
continue
# Vertical blend
if y > 0:
effective_overlap = min(overlap, tile_bottom - tile_top, height - tile_top)
if effective_overlap > 0:
mask = Image.new('L', (tile_right - tile_left, effective_overlap))
for i in range(mask.width):
for j in range(mask.height):
divisor = effective_overlap - 1 if effective_overlap > 1 else 1
mask.putpixel((i, j), int(255 * (j / divisor)))
blend_region = Image.composite(
generated_tile.crop((0, 0, mask.width, mask.height)),
result.crop((tile_left, tile_top, tile_right, tile_top + mask.height)),
mask
)
result.paste(blend_region, (tile_left, tile_top))
result.paste(generated_tile.crop((0, effective_overlap, generated_tile.width, generated_tile.height)), (tile_left, tile_top + effective_overlap))
else:
result.paste(generated_tile, (tile_left, tile_top))
# Horizontal blend
if x > 0:
effective_overlap_h = min(overlap, tile_right - tile_left, width - tile_left)
if effective_overlap_h > 0:
mask_h = Image.new('L', (effective_overlap_h, tile_bottom - tile_top))
for i in range(mask_h.width):
for j in range(mask_h.height):
divisor_h = effective_overlap_h - 1 if effective_overlap_h > 1 else 1
mask_h.putpixel((i, j), int(255 * (i / divisor_h)))
blend_region_h = Image.composite(
generated_tile.crop((0, 0, mask_h.width, mask_h.height)),
result.crop((tile_left, tile_top, tile_left + mask_h.width, tile_bottom)),
mask_h
)
result.paste(blend_region_h, (tile_left, tile_top))
result.paste(generated_tile.crop((effective_overlap_h, 0, generated_tile.width, generated_tile.height)), (tile_left + effective_overlap_h, tile_top))
else:
result.paste(generated_tile, (tile_left, tile_top))
return result
# Main enhance function
@spaces.GPU(duration=190)
def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength, progress=gr.Progress(track_tqdm=True)):
prompt = text_prompt
if image is not None:
prompt = florence_caption(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Use tiled if large, else direct
if image and (image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE):
output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
else:
kw = {}
if image is not None:
kw['image'] = image
kw['strength'] = strength
else:
kw['width'] = width
kw['height'] = height
output_image = pipe(
prompt,
generator=generator,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
**kw
).images[0]
return output_image, prompt, seed
# Gradio interface
title = "<h1 align='center'>FLUX Image Enhancer with Florence-2 Captioner</h1>"
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
text_prompt = gr.Textbox(label="Text Prompt (if no image)")
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.8)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, value=5.0)
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
seed = gr.Number(value=42, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Width")
height = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Height")
submit = gr.Button("Enhance")
with gr.Column():
output_image = gr.Image(label="Enhanced Image")
output_prompt = gr.Textbox(label="Generated Prompt")
output_seed = gr.Number(label="Used Seed")
submit.click(
enhance_image,
inputs=[input_image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength],
outputs=[output_image, output_prompt, output_seed]
)
print("✅ All models loaded successfully!")
demo.launch(server_port=7860, server_name="0.0.0.0") |