ndc8
commited on
Commit
Β·
994c0b4
1
Parent(s):
4b4e9ed
- backend_service.py +12 -2
- requirements.txt +3 -0
- verify_config.py +40 -0
backend_service.py
CHANGED
@@ -90,7 +90,7 @@ class ChatMessage(BaseModel):
|
|
90 |
return v
|
91 |
|
92 |
class ChatCompletionRequest(BaseModel):
|
93 |
-
model: str = Field(default_factory=lambda:
|
94 |
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
|
95 |
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
|
96 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
@@ -139,7 +139,14 @@ class CompletionRequest(BaseModel):
|
|
139 |
|
140 |
|
141 |
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
144 |
|
145 |
# Transformers model support
|
@@ -194,11 +201,13 @@ async def lifespan(app: FastAPI):
|
|
194 |
"""Application lifespan manager for startup and shutdown events"""
|
195 |
global processor, model, image_text_pipeline, current_model
|
196 |
logger.info("π Starting AI Backend Service (Hugging Face Spaces mode)...")
|
|
|
197 |
try:
|
198 |
logger.info(f"π₯ Loading model with transformers: {current_model}")
|
199 |
|
200 |
# For Gemma 3n models, use the specific classes
|
201 |
if "gemma-3n" in current_model.lower():
|
|
|
202 |
processor = AutoProcessor.from_pretrained(current_model)
|
203 |
model = Gemma3nForConditionalGeneration.from_pretrained(
|
204 |
current_model,
|
@@ -208,6 +217,7 @@ async def lifespan(app: FastAPI):
|
|
208 |
).eval()
|
209 |
else:
|
210 |
# Fallback for other models
|
|
|
211 |
processor = AutoTokenizer.from_pretrained(current_model)
|
212 |
model = AutoModelForCausalLM.from_pretrained(
|
213 |
current_model,
|
|
|
90 |
return v
|
91 |
|
92 |
class ChatCompletionRequest(BaseModel):
|
93 |
+
model: str = Field(default_factory=lambda: "google/gemma-3n-E4B-it", description="The model to use for completion")
|
94 |
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
|
95 |
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
|
96 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
|
|
139 |
|
140 |
|
141 |
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
142 |
+
# Force the correct model for Hugging Face Spaces deployment
|
143 |
+
ai_model_env = os.environ.get("AI_MODEL", "google/gemma-3n-E4B-it")
|
144 |
+
# Override GGUF models to use transformers-compatible version
|
145 |
+
if "GGUF" in ai_model_env:
|
146 |
+
current_model = "google/gemma-3n-E4B-it"
|
147 |
+
print(f"π Overriding GGUF model {ai_model_env} with transformers-compatible model: {current_model}")
|
148 |
+
else:
|
149 |
+
current_model = ai_model_env
|
150 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
151 |
|
152 |
# Transformers model support
|
|
|
201 |
"""Application lifespan manager for startup and shutdown events"""
|
202 |
global processor, model, image_text_pipeline, current_model
|
203 |
logger.info("π Starting AI Backend Service (Hugging Face Spaces mode)...")
|
204 |
+
logger.info(f"π§ Using model: {current_model}")
|
205 |
try:
|
206 |
logger.info(f"π₯ Loading model with transformers: {current_model}")
|
207 |
|
208 |
# For Gemma 3n models, use the specific classes
|
209 |
if "gemma-3n" in current_model.lower():
|
210 |
+
logger.info("π Detected Gemma 3n model - using specialized classes")
|
211 |
processor = AutoProcessor.from_pretrained(current_model)
|
212 |
model = Gemma3nForConditionalGeneration.from_pretrained(
|
213 |
current_model,
|
|
|
217 |
).eval()
|
218 |
else:
|
219 |
# Fallback for other models
|
220 |
+
logger.info("π Using standard transformers classes")
|
221 |
processor = AutoTokenizer.from_pretrained(current_model)
|
222 |
model = AutoModelForCausalLM.from_pretrained(
|
223 |
current_model,
|
requirements.txt
CHANGED
@@ -17,5 +17,8 @@ sentencepiece>=0.2.0
|
|
17 |
tokenizers
|
18 |
regex
|
19 |
|
|
|
|
|
|
|
20 |
# Optional: gradio for demo UI
|
21 |
# gradio
|
|
|
17 |
tokenizers
|
18 |
regex
|
19 |
|
20 |
+
# Required for Gemma 3n vision components
|
21 |
+
timm
|
22 |
+
|
23 |
# Optional: gradio for demo UI
|
24 |
# gradio
|
verify_config.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Verification script to show current model configuration
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
|
7 |
+
def show_model_config():
|
8 |
+
"""Show what model will be used"""
|
9 |
+
print("π Model Configuration Analysis")
|
10 |
+
print("=" * 50)
|
11 |
+
|
12 |
+
# Check environment variable
|
13 |
+
ai_model_env = os.environ.get("AI_MODEL", "google/gemma-3n-E4B-it")
|
14 |
+
print(f"π Environment variable AI_MODEL: {ai_model_env}")
|
15 |
+
|
16 |
+
# Apply override logic
|
17 |
+
if "GGUF" in ai_model_env:
|
18 |
+
current_model = "google/gemma-3n-E4B-it"
|
19 |
+
print(f"π OVERRIDE: GGUF model detected, using: {current_model}")
|
20 |
+
print(f" Original: {ai_model_env}")
|
21 |
+
print(f" Fixed to: {current_model}")
|
22 |
+
else:
|
23 |
+
current_model = ai_model_env
|
24 |
+
print(f"β
Using: {current_model}")
|
25 |
+
|
26 |
+
print(f"\nπ― Final model that will be loaded: {current_model}")
|
27 |
+
|
28 |
+
# Check if it's Gemma 3n
|
29 |
+
is_gemma_3n = "gemma-3n" in current_model.lower()
|
30 |
+
print(f"π€ Is Gemma 3n model: {is_gemma_3n}")
|
31 |
+
|
32 |
+
if is_gemma_3n:
|
33 |
+
print("π Will use: AutoProcessor + Gemma3nForConditionalGeneration")
|
34 |
+
else:
|
35 |
+
print("π Will use: AutoTokenizer + AutoModelForCausalLM")
|
36 |
+
|
37 |
+
return current_model
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
show_model_config()
|