Spaces:
Paused
Paused
Suvadeep Das
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -70,6 +70,34 @@ def pdf_to_images(pdf_file):
|
|
70 |
print(f"Error converting PDF to images: {e}")
|
71 |
return []
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def get_comprehensive_medical_extraction_prompt():
|
74 |
"""Complete medical data extraction prompt with all fields"""
|
75 |
return """You are a deterministic medical data extraction engine. You will receive a single page from a medical document. Your task is to extract ALL visible information from this page and return it in the exact JSON format below.
|
@@ -257,120 +285,64 @@ def extract_single_page(image, extraction_prompt, model, tokenizer):
|
|
257 |
tokenizer=tokenizer,
|
258 |
sampling=False,
|
259 |
temperature=0.1,
|
260 |
-
max_new_tokens=4000
|
261 |
)
|
262 |
|
263 |
# Try to parse JSON
|
264 |
try:
|
265 |
parsed_data = json.loads(response)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
"raw_response": response,
|
270 |
-
"model": "MiniCPM-V-2_6-GPU"
|
271 |
-
}
|
272 |
except json.JSONDecodeError:
|
273 |
-
|
274 |
-
return {
|
275 |
-
"status": "json_parse_error",
|
276 |
-
"data": {
|
277 |
-
"page_analysis": {
|
278 |
-
"page_contains_text": True,
|
279 |
-
"page_type": "unknown",
|
280 |
-
"overall_page_confidence": 0.5,
|
281 |
-
"all_visible_text": response
|
282 |
-
},
|
283 |
-
"extracted_data": {},
|
284 |
-
"confidence_scores": {},
|
285 |
-
"fields_found_on_this_page": [],
|
286 |
-
"parsing_error": "Could not parse JSON response"
|
287 |
-
},
|
288 |
-
"raw_response": response,
|
289 |
-
"model": "MiniCPM-V-2_6-GPU",
|
290 |
-
"error": "JSON parsing failed - returned raw text"
|
291 |
-
}
|
292 |
except Exception as e:
|
293 |
-
|
294 |
-
|
295 |
-
"error": str(e),
|
296 |
-
"data": None,
|
297 |
-
"raw_response": ""
|
298 |
-
}
|
299 |
|
300 |
@spaces.GPU(duration=600) # 10 minutes
|
301 |
-
def
|
302 |
-
"""Extract each page individually
|
303 |
try:
|
304 |
if pdf_file is None:
|
305 |
-
return {"
|
306 |
|
307 |
# Convert PDF to images
|
308 |
print("Converting PDF to images...")
|
309 |
images = pdf_to_images(pdf_file)
|
310 |
|
311 |
if not images:
|
312 |
-
return {"
|
313 |
|
314 |
-
print(f"Processing {len(images)} pages individually
|
315 |
|
316 |
# Load model once
|
317 |
model, tokenizer = load_model()
|
318 |
extraction_prompt = custom_prompt or get_comprehensive_medical_extraction_prompt()
|
319 |
|
320 |
-
# Process each page
|
321 |
-
|
322 |
-
successful_extractions = 0
|
323 |
|
324 |
for i, image in enumerate(images):
|
325 |
-
print(f"Extracting page {i+1}/{len(images)}
|
326 |
|
327 |
-
|
328 |
|
329 |
-
if
|
330 |
-
|
331 |
-
|
332 |
-
results.append({
|
333 |
-
"page_number": i + 1,
|
334 |
-
"extraction_result": page_result,
|
335 |
-
"timestamp": datetime.now().isoformat()
|
336 |
-
})
|
337 |
|
338 |
-
return
|
339 |
-
"status": "success",
|
340 |
-
"total_pages": len(images),
|
341 |
-
"successful_extractions": successful_extractions,
|
342 |
-
"individual_pages": results,
|
343 |
-
"processing_info": {
|
344 |
-
"model_used": "MiniCPM-V-2_6-GPU",
|
345 |
-
"extraction_timestamp": datetime.now().isoformat(),
|
346 |
-
"processing_method": "comprehensive_individual_page_extraction",
|
347 |
-
"extraction_prompt_used": "comprehensive_medical_fields",
|
348 |
-
"note": "Each page processed with full medical field extraction - combine results with separate AI"
|
349 |
-
},
|
350 |
-
"next_step_instructions": {
|
351 |
-
"combination_method": "Use ChatGPT/Claude to combine all pages into final medical record",
|
352 |
-
"fields_to_aggregate": [
|
353 |
-
"date_of_receipt", "patient_demographics", "insurance_info",
|
354 |
-
"referral_source", "diagnosis_codes", "reason_for_referral"
|
355 |
-
],
|
356 |
-
"confidence_handling": "Take highest confidence values across pages for each field"
|
357 |
-
}
|
358 |
-
}
|
359 |
|
360 |
except Exception as e:
|
361 |
-
return {
|
362 |
-
"status": "error",
|
363 |
-
"error": str(e),
|
364 |
-
"total_pages": 0,
|
365 |
-
"individual_pages": []
|
366 |
-
}
|
367 |
|
368 |
def create_gradio_interface():
|
369 |
-
with gr.Blocks(title="
|
370 |
-
gr.Markdown("# π₯
|
371 |
-
gr.Markdown("π **
|
372 |
|
373 |
-
with gr.Tab("π
|
374 |
with gr.Row():
|
375 |
with gr.Column():
|
376 |
pdf_input = gr.File(
|
@@ -384,147 +356,178 @@ def create_gradio_interface():
|
|
384 |
value="",
|
385 |
label="Custom Extraction Prompt (optional)",
|
386 |
lines=4,
|
387 |
-
placeholder="Leave empty for comprehensive medical extraction
|
388 |
)
|
389 |
|
390 |
-
extract_btn = gr.Button("
|
391 |
|
392 |
gr.Markdown("""
|
393 |
-
###
|
394 |
-
-
|
395 |
-
-
|
396 |
-
-
|
397 |
-
-
|
398 |
-
- β
**Clinical Info** (priority, reason for referral, medical history)
|
399 |
-
- β
**Confidence Scores** (0.0-1.0 for each field)
|
400 |
-
- β
**Full Text Transcription** (everything visible on each page)
|
401 |
""")
|
402 |
|
403 |
with gr.Column():
|
404 |
status_output = gr.Textbox(label="π Processing Status", interactive=False)
|
405 |
-
output = gr.JSON(label="π
|
406 |
|
407 |
-
with gr.Tab("π API Usage"):
|
408 |
gr.Markdown("""
|
409 |
-
##
|
410 |
|
411 |
-
### Python
|
|
|
|
|
412 |
```
|
413 |
-
import requests
|
414 |
-
import base64
|
415 |
-
|
416 |
-
with open("medical_efax.pdf", "rb") as f:
|
417 |
-
pdf_b64 = base64.b64encode(f.read()).decode()
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
"data": [
|
423 |
-
{"name": "efax.pdf", "data": f"application/pdf;base64,{pdf_b64}"},
|
424 |
-
"" # Custom prompt (optional)
|
425 |
-
]
|
426 |
-
}
|
427 |
-
)
|
428 |
|
429 |
-
|
|
|
430 |
|
431 |
-
#
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
|
|
452 |
|
453 |
-
|
|
|
454 |
```
|
455 |
-
# Prepare all page data for combination
|
456 |
-
all_pages_data = []
|
457 |
-
for page in result["data"]["individual_pages"]:
|
458 |
-
if page["extraction_result"]["status"] == "success":
|
459 |
-
all_pages_data.append({
|
460 |
-
"page": page["page_number"],
|
461 |
-
"extracted_data": page["extraction_result"]["data"]["extracted_data"],
|
462 |
-
"confidence_scores": page["extraction_result"]["data"]["confidence_scores"],
|
463 |
-
"fields_found": page["extraction_result"]["data"]["fields_found_on_this_page"]
|
464 |
-
})
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
|
470 |
-
|
471 |
-
|
|
|
|
|
|
|
472 |
|
473 |
-
|
474 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
- Highest confidence scores per field
|
479 |
-
- List of pages where each field was found
|
480 |
-
- Fields needing human review (confidence < 0.9)
|
481 |
-
'''
|
482 |
```
|
483 |
""")
|
484 |
|
485 |
-
with gr.Tab("
|
486 |
gr.Markdown("""
|
487 |
-
##
|
488 |
|
489 |
-
###
|
490 |
-
|
491 |
-
- `patient_first_name` - Patient's first name
|
492 |
-
- `patient_last_name` - Patient's last name
|
493 |
-
- `patient_dob` - Date of birth (MM/DD/YYYY)
|
494 |
-
- `patient_gender` - Male/Female/Other only
|
495 |
-
- `patient_primary_phone_number` - Main phone (###-###-####)
|
496 |
-
- `patient_secondary_phone_number` - Secondary phone
|
497 |
-
- `patient_email` - Email address (must have @ and domain)
|
498 |
-
- `patient_address` - Full address
|
499 |
-
- `patient_zip_code` - Last 5 digits only
|
500 |
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
|
524 |
-
###
|
525 |
-
-
|
526 |
-
-
|
527 |
-
-
|
|
|
528 |
""")
|
529 |
|
530 |
def process_with_status(pdf_file, custom_prompt):
|
@@ -534,12 +537,13 @@ def create_gradio_interface():
|
|
534 |
yield "π Converting PDF to images...", {}
|
535 |
|
536 |
try:
|
537 |
-
result =
|
538 |
|
539 |
-
if
|
540 |
-
|
|
|
541 |
else:
|
542 |
-
yield f"β Error: {result
|
543 |
|
544 |
except Exception as e:
|
545 |
yield f"β Failed: {str(e)}", {"error": str(e)}
|
|
|
70 |
print(f"Error converting PDF to images: {e}")
|
71 |
return []
|
72 |
|
73 |
+
def clean_empty_fields(data):
|
74 |
+
"""Recursively remove empty fields from dictionary"""
|
75 |
+
if not isinstance(data, dict):
|
76 |
+
return data
|
77 |
+
|
78 |
+
cleaned = {}
|
79 |
+
for key, value in data.items():
|
80 |
+
if isinstance(value, dict):
|
81 |
+
cleaned_value = clean_empty_fields(value)
|
82 |
+
if cleaned_value: # Only add if not empty
|
83 |
+
cleaned[key] = cleaned_value
|
84 |
+
elif isinstance(value, list):
|
85 |
+
if value: # Only add if list is not empty
|
86 |
+
cleaned_list = []
|
87 |
+
for item in value:
|
88 |
+
if isinstance(item, dict):
|
89 |
+
cleaned_item = clean_empty_fields(item)
|
90 |
+
if cleaned_item:
|
91 |
+
cleaned_list.append(cleaned_item)
|
92 |
+
elif item: # Not empty
|
93 |
+
cleaned_list.append(item)
|
94 |
+
if cleaned_list:
|
95 |
+
cleaned[key] = cleaned_list
|
96 |
+
elif value not in [None, "", [], {}]: # Not empty
|
97 |
+
cleaned[key] = value
|
98 |
+
|
99 |
+
return cleaned
|
100 |
+
|
101 |
def get_comprehensive_medical_extraction_prompt():
|
102 |
"""Complete medical data extraction prompt with all fields"""
|
103 |
return """You are a deterministic medical data extraction engine. You will receive a single page from a medical document. Your task is to extract ALL visible information from this page and return it in the exact JSON format below.
|
|
|
285 |
tokenizer=tokenizer,
|
286 |
sampling=False,
|
287 |
temperature=0.1,
|
288 |
+
max_new_tokens=4000
|
289 |
)
|
290 |
|
291 |
# Try to parse JSON
|
292 |
try:
|
293 |
parsed_data = json.loads(response)
|
294 |
+
# Clean empty fields
|
295 |
+
cleaned_data = clean_empty_fields(parsed_data)
|
296 |
+
return cleaned_data if cleaned_data else None
|
|
|
|
|
|
|
297 |
except json.JSONDecodeError:
|
298 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
except Exception as e:
|
300 |
+
print(f"Error extracting from page: {e}")
|
301 |
+
return None
|
|
|
|
|
|
|
|
|
302 |
|
303 |
@spaces.GPU(duration=600) # 10 minutes
|
304 |
+
def extract_pages_clean_json(pdf_file, custom_prompt=None):
|
305 |
+
"""Extract each page individually - RETURN ONLY NON-EMPTY JSON DATA"""
|
306 |
try:
|
307 |
if pdf_file is None:
|
308 |
+
return {"error": "No PDF provided"}
|
309 |
|
310 |
# Convert PDF to images
|
311 |
print("Converting PDF to images...")
|
312 |
images = pdf_to_images(pdf_file)
|
313 |
|
314 |
if not images:
|
315 |
+
return {"error": "Could not convert PDF"}
|
316 |
|
317 |
+
print(f"Processing {len(images)} pages individually...")
|
318 |
|
319 |
# Load model once
|
320 |
model, tokenizer = load_model()
|
321 |
extraction_prompt = custom_prompt or get_comprehensive_medical_extraction_prompt()
|
322 |
|
323 |
+
# Process each page and collect only non-empty JSON
|
324 |
+
page_results = {}
|
|
|
325 |
|
326 |
for i, image in enumerate(images):
|
327 |
+
print(f"Extracting page {i+1}/{len(images)}...")
|
328 |
|
329 |
+
page_json = extract_single_page(image, extraction_prompt, model, tokenizer)
|
330 |
|
331 |
+
# Only add to results if page contains data
|
332 |
+
if page_json:
|
333 |
+
page_results[f"page_{i+1}"] = page_json
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
return page_results # Return only pages with data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
except Exception as e:
|
338 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
def create_gradio_interface():
|
341 |
+
with gr.Blocks(title="Clean Medical eFax Extractor", theme=gr.themes.Soft()) as demo:
|
342 |
+
gr.Markdown("# π₯ Clean Medical eFax Data Extractor")
|
343 |
+
gr.Markdown("π **Returns Only Non-Empty Data** - Clean page-by-page extraction without empty fields")
|
344 |
|
345 |
+
with gr.Tab("π Clean JSON Extraction"):
|
346 |
with gr.Row():
|
347 |
with gr.Column():
|
348 |
pdf_input = gr.File(
|
|
|
356 |
value="",
|
357 |
label="Custom Extraction Prompt (optional)",
|
358 |
lines=4,
|
359 |
+
placeholder="Leave empty for comprehensive medical extraction..."
|
360 |
)
|
361 |
|
362 |
+
extract_btn = gr.Button("π Extract Clean JSON", variant="primary", size="lg")
|
363 |
|
364 |
gr.Markdown("""
|
365 |
+
### β
Clean Output Features
|
366 |
+
- **No Empty Fields**: Only fields with actual data
|
367 |
+
- **No Empty Pages**: Only pages containing information
|
368 |
+
- **Easier Combination**: Clean structure for AI merging
|
369 |
+
- **Optimized Size**: Reduced JSON payload
|
|
|
|
|
|
|
370 |
""")
|
371 |
|
372 |
with gr.Column():
|
373 |
status_output = gr.Textbox(label="π Processing Status", interactive=False)
|
374 |
+
output = gr.JSON(label="π Clean JSON Results", show_label=True)
|
375 |
|
376 |
+
with gr.Tab("π API Usage Instructions"):
|
377 |
gr.Markdown("""
|
378 |
+
## Updated API Instructions
|
379 |
|
380 |
+
### Method 1: Python Client (Recommended)
|
381 |
+
```
|
382 |
+
pip install gradio_client
|
383 |
```
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
+
```
|
386 |
+
from gradio_client import Client, handle_file
|
387 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
|
389 |
+
# Connect to your deployed Space
|
390 |
+
client = Client("crimsons-uv/miniCPM")
|
391 |
|
392 |
+
# Extract medical data from eFax PDF
|
393 |
+
def extract_efax_clean(pdf_path, custom_prompt=""):
|
394 |
+
result = client.predict(
|
395 |
+
pdf_file=handle_file(pdf_path),
|
396 |
+
custom_prompt=custom_prompt,
|
397 |
+
api_name="/process_with_status"
|
398 |
+
)
|
399 |
|
400 |
+
# result is tuple: [status_message, clean_json_data]
|
401 |
+
status, clean_data = result
|
402 |
+
|
403 |
+
print(f"Status: {status}")
|
404 |
+
|
405 |
+
# Process only pages with data
|
406 |
+
for page_key, page_data in clean_data.items():
|
407 |
+
if page_key.startswith('page_'):
|
408 |
+
print(f"\\n{page_key.upper()}:")
|
409 |
+
|
410 |
+
if 'extracted_data' in page_
|
411 |
+
data = page_data['extracted_data']
|
412 |
+
if 'patient_first_name' in
|
413 |
+
print(f" Patient: {data['patient_first_name']} {data.get('patient_last_name', '')}")
|
414 |
+
if 'primary_insurance' in
|
415 |
+
print(f" Insurance: {data['primary_insurance'].get('payer_name', '')}")
|
416 |
+
if 'reason_for_referral' in
|
417 |
+
print(f" Reason: {data['reason_for_referral']}")
|
418 |
+
|
419 |
+
return clean_data
|
420 |
|
421 |
+
# Usage
|
422 |
+
results = extract_efax_clean("path/to/your/efax.pdf")
|
423 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
+
### Method 2: cURL Commands
|
426 |
+
```
|
427 |
+
# Step 1: Make POST request
|
428 |
+
curl -X POST https://crimsons-uv-minicpm.hf.space/gradio_api/call/process_with_status \\
|
429 |
+
-H "Content-Type: application/json" \\
|
430 |
+
-d '{
|
431 |
+
"data": [
|
432 |
+
{"path": "your_efax.pdf", "meta": {"_type": "gradio.FileData"}},
|
433 |
+
""
|
434 |
+
]
|
435 |
+
}' \\
|
436 |
+
| awk -F'"' '{ print $4}' \\
|
437 |
+
| read EVENT_ID; curl -N https://crimsons-uv-minicpm.hf.space/gradio_api/call/process_with_status/$EVENT_ID
|
438 |
+
```
|
439 |
|
440 |
+
### Method 3: Direct HTTP API
|
441 |
+
```
|
442 |
+
import requests
|
443 |
+
import base64
|
444 |
+
import json
|
445 |
|
446 |
+
def call_clean_extraction_api(pdf_path, custom_prompt=""):
|
447 |
+
# Read and encode PDF
|
448 |
+
with open(pdf_path, 'rb') as f:
|
449 |
+
pdf_b64 = base64.b64encode(f.read()).decode()
|
450 |
+
|
451 |
+
# API payload
|
452 |
+
payload = {
|
453 |
+
"data": [
|
454 |
+
{"name": "efax.pdf", "data": f"application/pdf;base64,{pdf_b64}"},
|
455 |
+
custom_prompt
|
456 |
+
]
|
457 |
+
}
|
458 |
+
|
459 |
+
# Make request
|
460 |
+
response = requests.post(
|
461 |
+
"https://crimsons-uv-minicpm.hf.space/gradio_api/call/process_with_status",
|
462 |
+
json=payload,
|
463 |
+
headers={"Content-Type": "application/json"}
|
464 |
+
)
|
465 |
+
|
466 |
+
return response.json()
|
467 |
|
468 |
+
# Usage
|
469 |
+
clean_results = call_clean_extraction_api("your_efax.pdf")
|
|
|
|
|
|
|
|
|
470 |
```
|
471 |
""")
|
472 |
|
473 |
+
with gr.Tab("π Response Format"):
|
474 |
gr.Markdown("""
|
475 |
+
## Clean Response Structure
|
476 |
|
477 |
+
### Input: 5-page PDF with mixed content
|
478 |
+
### Output: Only pages with data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
+
```
|
481 |
+
{
|
482 |
+
"page_2": {
|
483 |
+
"page_analysis": {
|
484 |
+
"page_type": "patient_demographics",
|
485 |
+
"overall_page_confidence": 0.95,
|
486 |
+
"all_visible_text": "Patient: John Doe..."
|
487 |
+
},
|
488 |
+
"extracted_data": {
|
489 |
+
"patient_first_name": "John",
|
490 |
+
"patient_last_name": "Doe",
|
491 |
+
"patient_dob": "01/15/1980",
|
492 |
+
"patient_gender": "Male",
|
493 |
+
"patient_primary_phone_number": "555-123-4567",
|
494 |
+
"patient_address": "123 Main St, City, State 12345",
|
495 |
+
"patient_zip_code": "12345"
|
496 |
+
},
|
497 |
+
"confidence_scores": {
|
498 |
+
"patient_first_name": 1.0,
|
499 |
+
"patient_last_name": 1.0,
|
500 |
+
"patient_dob": 0.95,
|
501 |
+
"patient_gender": 1.0
|
502 |
+
},
|
503 |
+
"fields_found_on_this_page": ["patient_first_name", "patient_last_name", "patient_dob"]
|
504 |
+
},
|
505 |
+
"page_3": {
|
506 |
+
"extracted_data": {
|
507 |
+
"primary_insurance": {
|
508 |
+
"payer_name": "Blue Cross Blue Shield",
|
509 |
+
"member_id": "ABC123456789",
|
510 |
+
"group_id": "GRP001"
|
511 |
+
},
|
512 |
+
"reason_for_referral": "Cardiology consultation"
|
513 |
+
},
|
514 |
+
"confidence_scores": {
|
515 |
+
"primary_insurance": {
|
516 |
+
"payer_name": 1.0,
|
517 |
+
"member_id": 0.98,
|
518 |
+
"group_id": 0.95
|
519 |
+
},
|
520 |
+
"reason_for_referral": 1.0
|
521 |
+
}
|
522 |
+
}
|
523 |
+
}
|
524 |
+
```
|
525 |
|
526 |
+
### Benefits for AI Combination:
|
527 |
+
- β
**No empty pages**: Pages 1, 4, 5 had no data, so not included
|
528 |
+
- β
**No empty fields**: Only fields with actual values
|
529 |
+
- β
**Smaller payload**: Reduced data size for faster processing
|
530 |
+
- β
**Easy merging**: Clear structure for combining with ChatGPT/Claude
|
531 |
""")
|
532 |
|
533 |
def process_with_status(pdf_file, custom_prompt):
|
|
|
537 |
yield "π Converting PDF to images...", {}
|
538 |
|
539 |
try:
|
540 |
+
result = extract_pages_clean_json(pdf_file, custom_prompt if custom_prompt.strip() else None)
|
541 |
|
542 |
+
if "error" not in result:
|
543 |
+
page_count = len([k for k in result.keys() if k.startswith("page_")])
|
544 |
+
yield f"β
Extracted clean data from {page_count} pages with content", result
|
545 |
else:
|
546 |
+
yield f"β Error: {result['error']}", result
|
547 |
|
548 |
except Exception as e:
|
549 |
yield f"β Failed: {str(e)}", {"error": str(e)}
|