CrispChat / app.py
cstr's picture
Update app.py
9144903 verified
raw
history blame
16.5 kB
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model information
free_models = [
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]
# Helper functions
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def encode_file(file_path):
"""Convert text file to string"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
return f"Error reading file: {str(e)}"
def process_api_call(messages, model_id, temperature=0.7, top_p=1.0, max_tokens=1000, stream=False):
"""Make API call to OpenRouter"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
data = {
"model": model_id,
"messages": messages,
"stream": stream,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens
}
return requests.post(url, headers=headers, json=data, stream=stream)
def update_conversation(message, chat_history, model_choice, uploaded_image=None, uploaded_file=None,
temp=0.7, top_p=1.0, max_tokens=1000, stream_response=False):
"""Update conversation with new message"""
# Get model ID from model_choice
model_id = None
for name, model_id_value, *_ in free_models:
if name == model_choice or model_id_value == model_choice:
model_id = model_id_value
break
if not model_id:
# Fallback to a default model
model_id = "google/gemini-2.0-pro-exp-02-05:free"
# Build messages array from chat history
messages = []
for msg in chat_history:
if isinstance(msg, dict):
messages.append(msg)
elif isinstance(msg, tuple) and len(msg) == 2:
# Handle legacy tuple format
user_msg, ai_msg = msg
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Prepare the new user message
content = message
# Handle file attachment
if uploaded_file:
file_content = encode_file(uploaded_file)
content = f"{message}\n\nFile content:\n```\n{file_content}\n```"
# Handle image
if uploaded_image:
base64_image = encode_image(uploaded_image)
image_content = [
{"type": "text", "text": content},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": image_content})
else:
messages.append({"role": "user", "content": content})
# Add message to chat history
user_message = {"role": "user", "content": content}
assistant_message = {"role": "assistant", "content": ""}
chat_history.append(user_message)
chat_history.append(assistant_message)
try:
if stream_response:
# Handle streaming response
response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=True)
full_response = ""
buffer = ""
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
if chunk:
buffer += chunk.decode('utf-8')
while True:
line_end = buffer.find('\n')
if line_end == -1:
break
line = buffer[:line_end].strip()
buffer = buffer[line_end + 1:]
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
delta_content = data_obj["choices"][0]["delta"].get("content", "")
if delta_content:
full_response += delta_content
# Update the assistant message
chat_history[-1]["content"] = full_response
yield chat_history
except json.JSONDecodeError:
pass
else:
# Handle non-streaming response
response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=False)
response.raise_for_status()
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
chat_history[-1]["content"] = reply
yield chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1]["content"] = error_msg
yield chat_history
# Create simpler UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🔆 CrispChat - OpenRouter AI Models")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_share_button=False,
layout="bubble",
avatar_images=("👤", "🤖"),
type="messages"
)
with gr.Row():
user_message = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
lines=3
)
with gr.Row():
with gr.Column(scale=1):
image_upload = gr.Image(
type="pil",
label="Upload Image",
show_label=True
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Text File",
file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"]
)
with gr.Column(scale=1):
submit_btn = gr.Button("Send", variant="primary")
with gr.Column(scale=2):
with gr.Accordion("Model Settings", open=True):
model_selector = gr.Dropdown(
choices=[name for name, _ in free_models],
value=free_models[0][0],
label="Select Model"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
label="Top P"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
streaming = gr.Checkbox(
label="Enable Streaming",
value=True
)
clear_btn = gr.Button("Clear Chat")
# Set up event handlers
msg_submit_event = user_message.submit(
fn=update_conversation,
inputs=[
user_message,
chatbot,
model_selector,
image_upload,
file_upload,
temperature,
top_p,
max_tokens,
streaming
],
outputs=chatbot
)
btn_submit_event = submit_btn.click(
fn=update_conversation,
inputs=[
user_message,
chatbot,
model_selector,
image_upload,
file_upload,
temperature,
top_p,
max_tokens,
streaming
],
outputs=chatbot
)
# Clear chat
clear_btn.click(
fn=lambda: [],
outputs=[chatbot]
)
# Clear input after submission
msg_submit_event.then(
fn=lambda: "",
outputs=[user_message]
)
btn_submit_event.then(
fn=lambda: "",
outputs=[user_message]
)
# Mount FastAPI for external access
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class GenerateRequest(BaseModel):
message: str
model: str = None
image_data: str = None
@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
"""API endpoint for generating responses"""
try:
# Process request
messages = [{"role": "user", "content": request.message}]
# Handle image if provided
if request.image_data:
try:
image_bytes = base64.b64decode(request.image_data)
image = Image.open(BytesIO(image_bytes))
base64_image = encode_image(image)
messages = [{
"role": "user",
"content": [
{"type": "text", "text": request.message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}]
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
# Get model
model_id = request.model or free_models[0][1]
# Make API call
response = process_api_call(messages, model_id, stream=False)
response.raise_for_status()
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return {"error": f"Error: {str(e)}"}
# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/")
# Launch the app
if __name__ == "__main__":
demo.launch()