|
import os |
|
import base64 |
|
import gradio as gr |
|
import requests |
|
import json |
|
from io import BytesIO |
|
from PIL import Image |
|
import time |
|
|
|
|
|
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "") |
|
|
|
|
|
|
|
free_models = [ |
|
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000), |
|
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576), |
|
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576), |
|
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000), |
|
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000), |
|
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840), |
|
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840), |
|
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072), |
|
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072), |
|
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072), |
|
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072), |
|
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072), |
|
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072), |
|
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072), |
|
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072), |
|
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072), |
|
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072), |
|
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072), |
|
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000), |
|
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000), |
|
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000), |
|
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000), |
|
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000), |
|
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000), |
|
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960), |
|
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000), |
|
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000), |
|
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768), |
|
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768), |
|
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768), |
|
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768), |
|
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768), |
|
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768), |
|
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768), |
|
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768), |
|
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768), |
|
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768), |
|
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768), |
|
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000), |
|
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384), |
|
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000), |
|
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192), |
|
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192), |
|
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192), |
|
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192), |
|
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192), |
|
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192), |
|
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192), |
|
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192), |
|
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192), |
|
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192), |
|
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000), |
|
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096), |
|
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096), |
|
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096), |
|
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096), |
|
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096), |
|
] |
|
|
|
|
|
def encode_image(image): |
|
"""Convert PIL Image to base64 string""" |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
def encode_file(file_path): |
|
"""Convert text file to string""" |
|
try: |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
return file.read() |
|
except Exception as e: |
|
return f"Error reading file: {str(e)}" |
|
|
|
def process_api_call(messages, model_id, temperature=0.7, top_p=1.0, max_tokens=1000, stream=False): |
|
"""Make API call to OpenRouter""" |
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OPENROUTER_API_KEY}", |
|
"HTTP-Referer": "https://huggingface.co/spaces", |
|
} |
|
|
|
url = "https://openrouter.ai/api/v1/chat/completions" |
|
|
|
data = { |
|
"model": model_id, |
|
"messages": messages, |
|
"stream": stream, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens |
|
} |
|
|
|
return requests.post(url, headers=headers, json=data, stream=stream) |
|
|
|
def update_conversation(message, chat_history, model_choice, uploaded_image=None, uploaded_file=None, |
|
temp=0.7, top_p=1.0, max_tokens=1000, stream_response=False): |
|
"""Update conversation with new message""" |
|
|
|
model_id = None |
|
for name, model_id_value, *_ in free_models: |
|
if name == model_choice or model_id_value == model_choice: |
|
model_id = model_id_value |
|
break |
|
|
|
if not model_id: |
|
|
|
model_id = "google/gemini-2.0-pro-exp-02-05:free" |
|
|
|
|
|
messages = [] |
|
for msg in chat_history: |
|
if isinstance(msg, dict): |
|
messages.append(msg) |
|
elif isinstance(msg, tuple) and len(msg) == 2: |
|
|
|
user_msg, ai_msg = msg |
|
messages.append({"role": "user", "content": user_msg}) |
|
messages.append({"role": "assistant", "content": ai_msg}) |
|
|
|
|
|
content = message |
|
|
|
|
|
if uploaded_file: |
|
file_content = encode_file(uploaded_file) |
|
content = f"{message}\n\nFile content:\n```\n{file_content}\n```" |
|
|
|
|
|
if uploaded_image: |
|
base64_image = encode_image(uploaded_image) |
|
image_content = [ |
|
{"type": "text", "text": content}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{base64_image}" |
|
} |
|
} |
|
] |
|
messages.append({"role": "user", "content": image_content}) |
|
else: |
|
messages.append({"role": "user", "content": content}) |
|
|
|
|
|
user_message = {"role": "user", "content": content} |
|
assistant_message = {"role": "assistant", "content": ""} |
|
chat_history.append(user_message) |
|
chat_history.append(assistant_message) |
|
|
|
try: |
|
if stream_response: |
|
|
|
response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=True) |
|
|
|
full_response = "" |
|
buffer = "" |
|
|
|
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False): |
|
if chunk: |
|
buffer += chunk.decode('utf-8') |
|
|
|
while True: |
|
line_end = buffer.find('\n') |
|
if line_end == -1: |
|
break |
|
|
|
line = buffer[:line_end].strip() |
|
buffer = buffer[line_end + 1:] |
|
|
|
if line.startswith('data: '): |
|
data = line[6:] |
|
if data == '[DONE]': |
|
break |
|
|
|
try: |
|
data_obj = json.loads(data) |
|
delta_content = data_obj["choices"][0]["delta"].get("content", "") |
|
if delta_content: |
|
full_response += delta_content |
|
|
|
chat_history[-1]["content"] = full_response |
|
yield chat_history |
|
except json.JSONDecodeError: |
|
pass |
|
else: |
|
|
|
response = process_api_call(messages, model_id, temp, top_p, max_tokens, stream=False) |
|
response.raise_for_status() |
|
result = response.json() |
|
|
|
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response") |
|
chat_history[-1]["content"] = reply |
|
yield chat_history |
|
|
|
except Exception as e: |
|
error_msg = f"Error: {str(e)}" |
|
chat_history[-1]["content"] = error_msg |
|
yield chat_history |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# 🔆 CrispChat - OpenRouter AI Models") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
chatbot = gr.Chatbot( |
|
height=500, |
|
show_copy_button=True, |
|
show_share_button=False, |
|
layout="bubble", |
|
avatar_images=("👤", "🤖"), |
|
type="messages" |
|
) |
|
|
|
with gr.Row(): |
|
user_message = gr.Textbox( |
|
placeholder="Type your message here...", |
|
show_label=False, |
|
lines=3 |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_upload = gr.Image( |
|
type="pil", |
|
label="Upload Image", |
|
show_label=True |
|
) |
|
|
|
with gr.Column(scale=1): |
|
file_upload = gr.File( |
|
label="Upload Text File", |
|
file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"] |
|
) |
|
|
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Send", variant="primary") |
|
|
|
with gr.Column(scale=2): |
|
with gr.Accordion("Model Settings", open=True): |
|
model_selector = gr.Dropdown( |
|
choices=[name for name, _ in free_models], |
|
value=free_models[0][0], |
|
label="Select Model" |
|
) |
|
|
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=2.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
|
|
top_p = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.1, |
|
label="Top P" |
|
) |
|
|
|
max_tokens = gr.Slider( |
|
minimum=100, |
|
maximum=4000, |
|
value=1000, |
|
step=100, |
|
label="Max Tokens" |
|
) |
|
|
|
streaming = gr.Checkbox( |
|
label="Enable Streaming", |
|
value=True |
|
) |
|
|
|
clear_btn = gr.Button("Clear Chat") |
|
|
|
|
|
msg_submit_event = user_message.submit( |
|
fn=update_conversation, |
|
inputs=[ |
|
user_message, |
|
chatbot, |
|
model_selector, |
|
image_upload, |
|
file_upload, |
|
temperature, |
|
top_p, |
|
max_tokens, |
|
streaming |
|
], |
|
outputs=chatbot |
|
) |
|
|
|
btn_submit_event = submit_btn.click( |
|
fn=update_conversation, |
|
inputs=[ |
|
user_message, |
|
chatbot, |
|
model_selector, |
|
image_upload, |
|
file_upload, |
|
temperature, |
|
top_p, |
|
max_tokens, |
|
streaming |
|
], |
|
outputs=chatbot |
|
) |
|
|
|
|
|
clear_btn.click( |
|
fn=lambda: [], |
|
outputs=[chatbot] |
|
) |
|
|
|
|
|
msg_submit_event.then( |
|
fn=lambda: "", |
|
outputs=[user_message] |
|
) |
|
|
|
btn_submit_event.then( |
|
fn=lambda: "", |
|
outputs=[user_message] |
|
) |
|
|
|
|
|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
|
|
app = FastAPI() |
|
|
|
class GenerateRequest(BaseModel): |
|
message: str |
|
model: str = None |
|
image_data: str = None |
|
|
|
@app.post("/api/generate") |
|
async def api_generate(request: GenerateRequest): |
|
"""API endpoint for generating responses""" |
|
try: |
|
|
|
messages = [{"role": "user", "content": request.message}] |
|
|
|
|
|
if request.image_data: |
|
try: |
|
image_bytes = base64.b64decode(request.image_data) |
|
image = Image.open(BytesIO(image_bytes)) |
|
base64_image = encode_image(image) |
|
|
|
messages = [{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": request.message}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{base64_image}" |
|
} |
|
} |
|
] |
|
}] |
|
except Exception as e: |
|
return {"error": f"Image processing error: {str(e)}"} |
|
|
|
|
|
model_id = request.model or free_models[0][1] |
|
|
|
|
|
response = process_api_call(messages, model_id, stream=False) |
|
response.raise_for_status() |
|
result = response.json() |
|
|
|
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response") |
|
return {"response": reply} |
|
|
|
except Exception as e: |
|
return {"error": f"Error: {str(e)}"} |
|
|
|
|
|
app = gr.mount_gradio_app(app, demo, path="/") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |